File: util.h

package info (click to toggle)
r-cran-spacefillr 0.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,472 kB
  • sloc: ansic: 32,867; cpp: 5,657; makefile: 2
file content (250 lines) | stat: -rwxr-xr-x 9,116 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * Copyright (C) Andrew Helmer 2020.
 * Licensed under MIT Open-Source License: see LICENSE.
 *
 * Implements a few utility functions useful across the code base, especially
 * random number generation.
 */
#ifndef SAMPLE_GENERATION_UTIL_H_
#define SAMPLE_GENERATION_UTIL_H_

#include <memory>
#include <random>
#include <string>
#include <utility>
#include <vector>

#include "rng.h"

namespace pmj {

static constexpr int kBestCandidateSamples = 100;

typedef struct {
  double x;
  double y;
} Point;

// Gets a random double between any two numbers. Thread-safe.
double UniformRand(double min, double max, random_gen& rng);
// Generates a random int in the given range. Thread-safe.
int UniformInt(int min, int max, random_gen& rng);

// Given a set of samples, a grid that points to existing samples, and the
// number of cells in one dimension of that grid, returns the candidate which
// is the furthest from all existing points.
Point GetBestCandidateOfSamples(const std::vector<Point>& candidates,
                                const Point* sample_grid[],
                                const int dim);

// Given a sequence of PMJ02 points, this will shuffle them, while the resulting
// shuffle will still be a progressive (0,2) sequence. We don't actually use it
// anywhere, this is just to show how easy it is.
std::vector<const Point*> ShufflePMJ02Sequence(const pmj::Point points[],
                                               const int n);

// This performs a shuffle similar to the one above, but it's easier and doesn't
// require storing the shuffle, only a single random int. It doesn't shuffle
// quite as well though.
std::vector<const Point*> ShufflePMJ02SequenceXor(const pmj::Point points[],
                                                  const int n);

// Just for comparison with performance testing and error analysis.
std::unique_ptr<Point[]> GetUniformRandomSamples(
    const int num_samples);



double UniformRand(double min, double max, random_gen& rng) {
  return(rng.unif_rand()*(max - min) + min);
}

int UniformInt(int min, int max, random_gen& rng) {
  return(rng.unif_rand()*(max - min) + min);
}

inline double GetToroidalDistSq(double x1, double y1, double x2, double y2) {
  double x_diff = fabs(x2-x1);
  if (x_diff > 0.5) x_diff = 1.0 - x_diff;
  double y_diff = fabs(y2-y1);
  if (y_diff > 0.5) y_diff = 1.0 - y_diff;

  return (x_diff*x_diff)+(y_diff*y_diff);
}

inline int WrapIndex(const int index,
                     const int limit) {
  if (index < 0) return index+limit;
  if (index >= limit) return index-limit;
  return index;
}

inline void UpdateMinDistSq(
    const Point& candidate, const Point& point, double* min_dist_sq) {
  double dist_sq =
    GetToroidalDistSq(point.x, point.y, candidate.x, candidate.y);
  if (dist_sq < *min_dist_sq) {
    *min_dist_sq = dist_sq;
  }
}

inline void UpdateMinDistSqWithPointInCell(const Point& sample,
                                           const Point* sample_grid[],
                                                                   const int x,
                                                                   const int y,
                                                                   const int dim,
                                                                   double* min_dist_sq) {
  const int wrapped_x = WrapIndex(x, dim);
  const int wrapped_y = WrapIndex(y, dim);
  const Point* pt = sample_grid[wrapped_y*dim + wrapped_x];
  if (pt != nullptr) {
    UpdateMinDistSq(sample, *pt, min_dist_sq);
  }
}

double GetNearestNeighborDistSq(const Point& sample,
                                const Point* sample_grid[],
                                const int dim,
                                const double max_min_dist_sq) {
  // This function works by using the sample grid, since we know that the points
  // are well-distributed with at most one point in each cell.
  //
  // Start with the cells that are adjacent to our current cell and each
  // loop iteration we move outwards. We keep a track of the "grid radius",
  // which is the radius of the circle contained within our squares. If the
  // nearest point falls within this radius, we know that the next outward shift
  // can't find any nearer points.
  //
  // We do wrap around cells, and compute toroidal distances.
  const int x_pos = sample.x * dim;
  const int y_pos = sample.y * dim;

  // The minimum distance we've found between points, so far. 2.0 is the highest
  // possible value in the [0, 1) interval in 2 dimensions.
  double min_dist_sq = 2.0;
  const double grid_size = 1.0 / dim;
  for (int i = 1; i <= dim/2; i++) {
    const int x_min = x_pos - i;
    const int x_max = x_pos + i;
    const int y_min = y_pos - i;
    const int y_max = y_pos + i;

    int x = x_min;
    int y = y_min;
    for (; x < x_max; x++)  // Scan right over bottom row, ending at corner.
      UpdateMinDistSqWithPointInCell(
        sample, sample_grid, x, y, dim, &min_dist_sq);
    for (; y < y_max; y++)  // Scan up over right column, ending at corner.
      UpdateMinDistSqWithPointInCell(
        sample, sample_grid, x, y, dim, &min_dist_sq);
    for (; x > x_min; x--)  // Scan left over top row.
      UpdateMinDistSqWithPointInCell(
        sample, sample_grid, x, y, dim, &min_dist_sq);
    for (; y > y_min; y--)  // Scan down over left column.
      UpdateMinDistSqWithPointInCell(
        sample, sample_grid, x, y, dim, &min_dist_sq);

    // sqrt(0.5)*grid_size is the furthest a point can be from the center of its
    // square, so we add that.
    const double grid_radius = grid_size * (i + 0.7072);
    const double grid_radius_sq = grid_radius * grid_radius;
    if (min_dist_sq < grid_radius_sq ||
        min_dist_sq < max_min_dist_sq) {
      break;
    }
  }

  return min_dist_sq;
}

Point GetBestCandidateOfSamples(const std::vector<Point>& candidates,
                                const Point* sample_grid[],
                                const int dim) {
  // Hypothetically, it could be faster to search all the points in parallel,
  // culling points as we go, but a naive implementation of this was only a tiny
  // bit faster, and the code was uglier, so we'll leave it for now.
  Point best_candidate;
  double max_min_dist_sq = 0.0;

  for (size_t i = 0; i < candidates.size(); i++) {
    Point cand_sample = candidates[i];
    double dist_sq =
      GetNearestNeighborDistSq(cand_sample,
                               sample_grid,
                               dim,
                               max_min_dist_sq);
    if (dist_sq > max_min_dist_sq) {
      best_candidate = cand_sample;
      max_min_dist_sq = dist_sq;
    }
  }

  return best_candidate;
}

/*
 * This is kind of like a binary tree shuffle. Easy to think about for 4 points.
 * We can swap points 1 and 2, and we can swap 3 and 4, and we can swap the
 * pairs (1,2) and (3,4), but we can't swap 1 with 3 or 4, or 2 with 3 or 4. So
 * 2143 is a possible sequence, but 1324 is not. This works because in a
 * PMJ(0,2) sequence, every multiple of a power of two is also a valid PMJ(0,2)
 * sequence, at least if it's constructed using the ShuffleSwap subquadrant
 * selection.
 */
std::vector<const Point*> ShufflePMJ02Sequence(const pmj::Point points[],
                                               const int n,
                                               random_gen& rng) {
  assert((n & (n - 1)) == 0);  // This function only works for powers of two.
  std::vector<const Point*> shuffled_points(n);
  for (int i = 0; i < n; i++) {
    shuffled_points[i] = &points[i];
  }

  for (int stride = 2; stride < n; stride <<= 1) {
    for (int i = 0; i < n; i += stride) {
      if (UniformRand(0,1,rng) < 0.5) {
        for (int j = 0; j < stride/2; j++) {
          const Point* pt = shuffled_points[i+j];
          shuffled_points[i+j] = shuffled_points[i+j+stride/2];
          shuffled_points[i+j+stride/2] = pt;
        }
      }
    }
  }

  return shuffled_points;
}

/*
 * This is equivalent to the previous function, ShufflePMJ02Sequence, but if you
 * moved the if (UniformRand() < 0.5) outside the (int i = 0) loop. It doesn't
 * shuffle as well, but the advantage is that you only need to have a single int
 * to encode the whole shuffle.
 */
std::vector<const Point*> ShufflePMJ02SequenceXor(const pmj::Point points[],
                                                  const int n,
                                                  random_gen& rng) {
  assert((n & (n - 1)) == 0);  // This function only works for powers of two.
  std::vector<const Point*> shuffled_points(n);
  int random_encode = UniformInt(0, n-1, rng);
  for (int i = 0; i < n; i++) {
    shuffled_points[i] = &points[i^random_encode];
  }

  return shuffled_points;
}

std::unique_ptr<Point[]> GetUniformRandomSamples(const int num_samples, random_gen& rng) {
  auto samples = std::unique_ptr<Point[]>(new Point[num_samples]());

  for (int i = 0; i < num_samples; i++) {
    samples[i] = {UniformRand(0,1,rng), UniformRand(0,1,rng)};
  }

  return samples;
}


}  // namespace pmj

#endif  // SAMPLE_GENERATION_UTIL_H_