File: CressieWikle.R

package info (click to toggle)
r-cran-spacetime 1.2-4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,308 kB
  • sloc: sh: 13; makefile: 2
file content (187 lines) | stat: -rw-r--r-- 5,761 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# R script that downloads and analyzes some of the examples in
# Noel Cressie, Christopher K. Wikle, 2011: Statistics for
# spatio-temporal data; Wiley, NY.

# data obtained (checked Fri May 20 10:37:33 CEST 2011) from:
# ftp://ftp.wiley.com/public/sci_tech_med/spatio_temporal_data

getFILE = function(f) { 
	if(file.exists(f)) 
		f
	else paste("ftp://ftp.wiley.com/public/sci_tech_med/spatio_temporal_data/",
	  	f, sep="") 
}
# read locations:
ecd.ll = as.matrix(read.table(getFILE("ECDovelatlon.dat"), header=FALSE))
# space: convert to SpatialPoints, and set CRS:
library(sp)
ecd.ll = SpatialPoints(ecd.ll[,c(2,1)]) # lat-lon -> lon-lat
proj4string(ecd.ll) = "+proj=longlat +datum=WGS84 +ellps=WGS84"

# time:
ecd.years = 1986:2003
ecd.y = as.Date(paste(ecd.years, "-01-01", sep=""), "%Y-%m-%d")

# spacetime:
# read, and convert to matrix
ecd = as.matrix(read.table(getFILE("ECDoveBBS1986_2003.dat"), header=FALSE))
# set missing values
ecd[ecd == -1] = NA
library(spacetime)
ecd.st = STFDF(ecd.ll, ecd.y, data.frame(counts = as.vector(ecd)))
sel = (1:6) * 3
stplot(ecd.st[,sel], 
	ecd.years[sel], 
	col.regions=bpy.colors(),
	key.space = "right",
	main = "Figure 5.5"
)

ecd.xts = as(ecd.st, "xts")
ecd.yt = (apply(ecd.xts, 1, function(x)sum(x,na.rm=TRUE)))
plot(index(ecd.xts), ecd.yt, type = 'b',
	xlab = 'Year', ylab = 'Eurasian Collared Dove Count')
title("Figure 5.3")

sst = as.matrix(read.table(getFILE("SST011970_032003.dat"), header = FALSE))

# space:
sst.ll = as.matrix(read.table(getFILE("SSTlonlat.dat"), header = FALSE))
sst.ll = SpatialPoints(sst.ll)
proj4string(sst.ll) = "+proj=longlat +datum=WGS84"
gridded(sst.ll) = TRUE

# time:
sst.y = rep(1970:2003, each = 12, length.out = 399)
sst.m = rep(1:12, length.out = 399)
# dates:
sst.Date = as.Date(paste(sst.y, sst.m, "01", sep="-"), "%Y-%m-%d")
# as year/months:
library(zoo)
sst.ym = as.yearmon(sst.Date)

# landmask:
sea = (as.vector(read.table(getFILE("SSTlandmask.dat"), header=FALSE)) != 1)[,1]

# spacetime:
sst.st = STFDF(sst.ll, sst.ym, data.frame(sst = as.vector(sst)))

# make a large plot window for the following plot:
tsel = 1:144
stplot(sst.st[sea, tsel], 
	format(sst.Date, "%Y-%m")[tsel],
	layout = c(12,12))

# re-create figure 5.1, with time axis increasing upward: 
library(rgeos) # needed for "over" method, to select pixels on a line;
eq = SpatialLines(list(Lines(list(Line(cbind(c(0,360),c(0,0)))), "equator")),
	CRS(proj4string(sst.st)))
stplot(sst.st[eq, "1996::2003", drop=F], 
	mode = "xt",
	col.regions=bpy.colors(), cuts = 32,
	main="Figure 5.1",
	xlab="Longitude", ylab = "Time (Year)",
	scaleX=1
)
# see also hovmoller() at http://rastervis.r-forge.r-project.org/

# re-create Fig 5.4:
stplot(sst.st[sea,"1998-02::1999-01"],
	col.regions=bpy.colors(),
	# funny order; as.table=TRUE by default, so:
	index.cond=list(c(1,7,2,8,3,9,4,10,5,11,6,12)),
	layout = c(2, 6), scales = list(draw = TRUE),
	main = "Figure 5.4"
)

# Figure 5.17: EOF's
eof = eof(sst.st[sea,])
spplot(eof[1], col.regions = bpy.colors(), scales = list(draw=TRUE),
	main = "First EOF (Figure 5.17a)")
spplot(eof[2], col.regions = bpy.colors(), scales = list(draw=TRUE),
	main = "5.17c; Second EOF")

# 5.19: EOF summary stats
eof.summ = eof(sst.st[sea,], returnEOFs = FALSE)

library(xts)
eof.t = xts(predict(eof.summ), sst.ym)
plot(eof.t[,1], main = "5.17b (note that sign has flipped)")
plot(eof.t[,2], main = "5.17d")
# ... and so on.

v = eof.summ$sdev^2
plot(100*cumsum(v[1:100])/sum(v),
	ylim=c(30, 100), ylab = "Percent", xlab = "EOF", main = "Figure 5.19")

# canton data:
ca_nb = read.csv(getFILE("Canton_neighbor.csv"))
ca_ve = read.csv(getFILE("Canton_vertex.csv"))

xc = paste("X", 1:76, sep="")
yc = paste("Y", 1:76, sep="")
p = lapply(1:nrow(ca_ve), function(r) {
		pol = (na.omit(cbind(as.numeric(ca_ve[r,xc]), 
			as.numeric(ca_ve[r,yc]))))
		if (!identical(pol[1,],pol[nrow(pol),]))
			pol = rbind(pol, pol[1,])
		Polygon(pol)
   })
srl = lapply(1:268, function(i) {
		Polygons(p[i], as.character(ca_ve[i, "INSEE_ID"]))
   })
rownames(ca_nb) = ca_nb$INSEE_ID
can = SpatialPolygonsDataFrame(SpatialPolygons(srl), ca_nb[,1:9])
q = quantile(can$Z, c(0,.05,.20,.35,.65,.80,.95,1))
can$Zcl = factor(findInterval(can$Z, q, all.inside = TRUE),
	labels = c("< 5%", "5%-20%", "20%-35%", "35%-65%", "65%-80%", 
	"80%-95%", "> 95%"))
library(RColorBrewer)
# get missing polygons, paint them green:
srl.mv = lapply(269:300, function(i) {
		Polygons(p[i], as.character(ca_ve[i, "NO"]))
   })
mv = SpatialPolygons(srl.mv)
mv.col = "#80FF80"
lt = list("sp.polygons", mv, fill = mv.col)
# info of fig 4.11 (with some differences!) --
spplot(can["Zcl"], sp.layout = lt,
	col.regions= rev(brewer.pal(7, "RdBu")), cuts=6) 

# get neighbours:
nb = apply(ca_nb[paste("N", 1:12, sep="")], 1, function(x) x[x!=0])
# convert neighbour index to 1:268
nb = lapply(nb, function(x) which(row.names(can) %in% x))

plot(can)
plot(mv, col = mv.col, add = TRUE)
x = coordinates(can)
row.names(x) = row.names(can)
#for(i in 1:268) {
#	for (j in 1:length(nb[[i]]))
#		lines(rbind(x[i,], x[as.character(nb[[i]][j]),]),col=grey(.5))
#		lines(rbind(x[i,], x[nb[[i]][j],]),col=grey(.5))
#}
library(spdep)
class(nb) = "nb"
plot(nb, coordinates(can), col = grey(.5), add=TRUE)
lw = nb2listw(nb)
# need to figure out whether the output of this is nonsense:
spautolm(Z~X1+X2, as.data.frame(can), lw)

s = sst.st[,1:3]
stplot(s)
sp = sst.st[,1]
class(sp)
sp.x = spsample(sp, 630, "regular", offset = c(.5,.5))
stplot(s, sp.layout=list("sp.points", sp.x))
gridded(sp.x)=TRUE
sa = aggregate(s, sp.x, mean)
stplot(sa)
s1 = aggregate(s, sp.x[sample(630),], mean)
s2 = aggregate(s, sp.x[sample(630),], mean)
stplot(s1)
s1[1,1]
stplot(s2) # plot should be identical
# should be different, as pixel order changed:
s2[1,1]