1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
% Mon Jun 20 22:48:30 CEST 2011
\documentclass[nogin,a4paper]{article}
%\usepackage[OT1]{fontenc}
\usepackage[colorlinks=true,urlcolor=blue]{hyperref}
\usepackage{Sweave}
\usepackage[utf8]{inputenc}
\newcommand{\code}[1]{{\tt #1}}
\title{\bf Spatio-temporal objects to proxy a PostgreSQL table }
\author{
\includegraphics[width=5cm]{ifgi-logo_int} \hspace{.5cm}
\includegraphics[width=4cm]{logo52n} \\
\href{mailto:edzer.pebesma@uni-muenster.de}{Edzer Pebesma}
}
\date{\small \today }
\begin{document}
%\VignetteIndexEntry{ Spatio-temporal objects to proxy a PostgreSQL table }
\maketitle
\begin{abstract}
This vignette describes and implements a class that proxies data
sets in a PostgreSQL database with classes in the spacetime package.
This might allow access to data sets too large to fit into R memory.
\end{abstract}
\tableofcontents
\section{Introduction}
Massive data are difficult to analyze with R, because R objects
reside in memory. Spatio-temporal data easily become massive, either
because the spatial domain contains a lot of information (satellite
imagery), or many time steps are available (high resolution sensor
data), or both. This vignette shows how data residing in a data
base can be read into R using spatial or temporal selection.
In case the commands are not evaluated because CRAN packages cannot
access an external data base, a document with evaluated commands
is found \href{http://pebesma.staff.ifgi.de/stpg.pdf}{here}.
This vignette was run using the following libraries:
<<eval=FALSE>>=
library(RPostgreSQL)
@
<<>>=
library(sp)
library(spacetime)
@
\section{Setting up a database}
We will first set the characteristics of the database\footnote{It is
assumed that the database is {\em spatially enabled}, i.e. it
understands how simple features are stored. The standard for this
from the open geospatial consortium is described
\href{http://www.opengeospatial.org/standards/sfs}{here}.}
<<>>=
dbname = "postgis"
user = "edzer"
password = "pw"
#password = ""
@
Next, we will create a driver and connect to the database:
<<eval=FALSE>>=
drv <- dbDriver("PostgreSQL")
con <- dbConnect(drv, dbname=dbname, user=user, password=password,
host='localhost', port='5432')
@
It should be noted that these first two commands are specific to
PostgreSQL; from here on, commands are generic and should work
for any database connector that uses the interface of package
\code{DBI}.
We now remove a set of tables (if present) so they can be created later on:
<<eval=FALSE>>=
dbRemoveTable(con, "rural_attr")
dbRemoveTable(con, "rural_space")
dbRemoveTable(con, "rural_time")
dbRemoveTable(con, "space_select")
@
%dbSendQuery(con, "drop index time_idx;")
Now we will create the table with spatial features (observation
locations). For this, we need the \code{rgdal} function \code{writeOGR},
which by default creates an index on the geometry:
<<eval=FALSE>>=
data(air)
rural = STFDF(stations, dates, data.frame(PM10 = as.vector(air)))
rural = as(rural, "STSDF")
p = rural@sp
sp = SpatialPointsDataFrame(p, data.frame(geom_id=1:length(p)))
library(rgdal)
OGRstring = paste("PG:dbname=", dbname, " user=", user,
" password=", password, " host=localhost", sep = "")
print(OGRstring)
writeOGR(sp, OGRstring, "rural_space", driver = "PostgreSQL")
@
In case you have problems replicating this, verify that your \code{rgdal}
installation privides the \code{PostgreSQL} driver, e.g. by checking that
<<eval=FALSE>>=
subset(ogrDrivers(), name == "PostgreSQL")$write
@
prints a \code{TRUE}, and not a \code{logical(0)}.
Second, we will write the table with times to the database,
and create an index to time:
<<eval=FALSE>>=
df = data.frame(time = index(rural@time), time_id = 1:nrow(rural@time))
dbWriteTable(con, "rural_time", df)
idx = "create index time_idx on rural_time (time);"
dbSendQuery(con, idx)
@
Finally, we will write the full attribute data table to PosgreSQL,
along with its indexes to the spatial and temporal tables:
<<eval=FALSE>>=
idx = rural@index
names(rural@data) = "pm10" # lower case
df = cbind(data.frame(geom_id = idx[,1], time_id = idx[,2]), rural@data)
dbWriteTable(con, "rural_attr", df)
@
\section{A proxy class}
The following class has as components a spatial and temporal
data structure, but no spatio-temporal attributes (they are assumed
to be the most memory-hungry). The other slots refer to the according
tables in the PostGIS database, the name(s) of the attributes in the
attribute table, and the database connection.
<<keep.source=TRUE>>=
setClass("ST_PG", contains = "ST",
# slots = c(space_table = "character",
representation(space_table = "character",
time_table = "character",
attr_table = "character",
attr = "character",
con = "PostgreSQLConnection"))
@
Next, we will create an instance of the new class:
<<eval=FALSE,keep.source=TRUE>>=
rural_proxy = new("ST_PG",
#ST(rural@sp, rural@time, rural@endTime),
as(rural, "ST"),
space_table = "rural_space",
time_table = "rural_time",
attr_table = "rural_attr",
attr = "pm10",
con = con)
@
\section{Selection based on time period and/or region }
The following two helper functions create a character string with
an SQL command that for a temporal or spatial selection:
<<keep.source=TRUE>>=
.SqlTime = function(x, j) {
stopifnot(is.character(j))
require(xts)
t = .parseISO8601(j)
t1 = paste("'", t$first.time, "'", sep = "")
t2 = paste("'", t$last.time, "'", sep = "")
what = paste("geom_id, time_id", paste(x@attr, collapse = ","), sep = ", ")
paste("SELECT", what, "FROM", x@attr_table, "AS a JOIN", x@time_table,
"AS b USING (time_id) WHERE b.time >= ", t1, "AND b.time <=", t2,";")
}
.SqlSpace = function(x, i) {
stopifnot(is(i, "Spatial"))
writeOGR(i, OGRstring, "space_select", driver = "PostgreSQL")
what = paste("geom_id, time_id", paste(x@attr, collapse = ","), sep = ", ")
paste("SELECT", what, "FROM", x@attr_table,
"AS a JOIN (SELECT p.wkb_geometry, p.geom_id FROM",
x@space_table, " AS p, space_select AS q",
"WHERE ST_Intersects(p.wkb_geometry, q.wkb_geometry))",
"AS b USING (geom_id);")
}
@
The following selection method selects a time period only, as
defined by the methods in package \code{xts}. A time period is
defined as a valid ISO8601 string, e.g. 2005-05 is the full month
of May for 2005.
<<keep.source=TRUE>>=
setMethod("[", "ST_PG", function(x, i, j, ... , drop = TRUE) {
stopifnot(missing(i) != missing(j)) # either of them present
if (missing(j))
sql = .SqlSpace(x,i)
else
sql = .SqlTime(x,j)
print(sql)
df = dbGetQuery(x@con, sql)
STSDF(x@sp, x@time, df[x@attr], as.matrix(df[c("geom_id", "time_id")]))
})
@
<<eval=FALSE>>=
pm10_20050101 = rural_proxy[, "2005-01-01"]
summary(pm10_20050101)
summary(rural[,"2005-01-01"])
pm10_NRW = rural_proxy[DE_NUTS1[10,],]
summary(pm10_NRW)
summary(rural[DE_NUTS1[10,],])
@
Clearly, the temporal and spatial components are not subsetted, so do
not reflect the actual selection made; the attribute data however do;
the following selection step ``cleans'' the unused features/times:
<<eval=FALSE>>=
dim(pm10_NRW)
pm10_NRW = pm10_NRW[T,]
dim(pm10_NRW)
@
Comparing sizes, we see that the selected object is smaller:
<<eval=FALSE>>=
object.size(rural)
object.size(pm10_20050101)
object.size(pm10_NRW)
@
\section{Closing the database connection}
The following commands close the database connection and release
the driver resources:
<<eval=FALSE>>=
dbDisconnect(con)
dbUnloadDriver(drv)
@
\section{Limitations and alternatives}
The example code in this vignette is meant as an example and is not
meant as a full-fledged database access mechanism for spatio-temporal
data bases. In particular, the selection here can do only {\em
one} of spatial locations (entered as features) or time periods.
If database access is only based on time, a spatially enabled
database (such as PostGIS) would not be needed.
For massive databases, data would typically not be loaded into
the database from R first, but from somewhere else.
An alternative to access from R large, possibly massive
spatio-temporal data bases for the case where the data base is
accessible through a sensor observation
service (SOS) is provided by the R package
\href{https://cran.r-project.org/web/package=sos4R}{sos4R},
which is also on CRAN.
\end{document}
|