1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
#' Jointly optimal bandwidth selection for the spatial relative risk function
#'
#' Methods to find a jointly optimal, common case-control isotropic bandwidth for use in
#' estimation of the fixed or adaptive kernel-smoothed relative risk function.
#'
#' Given the established preference of using a common bandwidth for both case
#' and control density estimates when constructing a relative
#' risk surface, This function calculates a `jointly optimal', common isotropic
#' LSCV bandwidth for the (Gaussian) kernel-smoothed relative risk function
#' (case-control density-ratio). It can be shown that choosing a bandwidth that
#' is equal for both case and control density estimates is preferable to
#' computing `separately optimal' bandwidths (Kelsall and Diggle, 1995). The user
#' can choose to either calculate a common smoothing parameter for a fixed-bandwidth
#' relative risk surface (\code{type = "fixed"}; default), or a common global bandwidth for
#' an adaptive risk surface (\code{type = "adaptive"}). See further comments below.
#'
#'
#'
#' \itemize{
#' \item\code{method = "kelsall-diggle"}: the function computes the
#' common bandwidth which minimises the approximate mean integrated squared
#' error (MISE) of the log-transformed risk surface (Kelsall and Diggle, 1995).
#' \item\code{method = "hazelton"}: the function minimises a
#' \emph{weighted-by-control} MISE of the (raw) relative risk function
#' (Hazelton, 2008).
#' \item\code{method = "davies"}: the optimal bandwidth is
#' one that minimises a crude plug-in approximation to the \emph{asymptotic}
#' MISE (Davies, 2013). Only possible for \code{type = "fixed"}.
#' }
#'
#' For jointly optimal, common global bandwidth selection when \code{type = "adaptive"}, the
#' optimisation routine utilises \code{\link{multiscale.density}}. Like \code{\link{LSCV.density}},
#' the leave-one-out procedure does not affect the pilot density, for which additional
#' control is offered via the \code{hp} and \code{pilot.symmetry} arguments. The user has the option of
#' obtaining a so-called \emph{symmetric} estimate (Davies et al. 2016) via
#' \code{pilot.symmetry}. This amounts to choosing the same pilot density for
#' both case and control densities. By choosing \code{"none"} (default), the
#' result uses the case and control data separately for the fixed-bandwidth
#' pilots, providing the original asymmetric density-ratio of Davies and
#' Hazelton (2010). By selecting either of \code{"f"}, \code{"g"}, or
#' \code{"pooled"}, the pilot density is calculated based on the case, control,
#' or pooled case/control data respectively (using \code{hp[1]} as the fixed
#' bandwidth). Davies et al. (2016) noted some beneficial practical behaviour
#' of the symmetric adaptive surface over the asymmetric. (The pilot bandwidth(s), if not supplied in \code{hp}, are calculated
#' internally via default use of \code{\link{LSCV.density}}, using the requested symmetric-based data set, or separately with respect to the case and control datasets \code{f} and \code{g} if
#' \code{pilot.symmetry = "none"}.)
#'
#' @param f Either a pre-calculated object of class \code{\link{bivden}}
#' representing the `case' (numerator) density estimate, or an object of class
#' \code{\link[spatstat.geom]{ppp}} giving the observed case data. Alternatively, if
#' \code{f} is \code{\link[spatstat.geom]{ppp}} object with dichotomous
#' factor-valued \code{\link[spatstat.geom]{marks}}, the function treats the first
#' level as the case data, and the second as the control data, obviating the
#' need to supply \code{g}.
#' @param g As for \code{f}, for the `control' (denominator) density; this
#' object must be of the same class as \code{f}. Ignored if, as stated above,
#' \code{f} contains both case and control observations.
#' @param hlim An optional vector of length 2 giving the limits of the
#' optimisation routine with respect to the bandwidth. If unspecified, the
#' function attempts to choose this automatically.
#' @param hseq An optional increasing sequence of bandwidth values at which to
#' manually evaluate the optimisation criterion. Used only in the case
#' \code{(!auto.optim && is.null(hlim))}.
#' @param type A character string; \code{"fixed"} (default) performs classical leave-one-out
#' cross-validation for a jointly optimal fixed bandwidth. Alternatively, \code{"adaptive"} utilises
#' multiscale adaptive kernel estimation (Davies & Baddeley, 2018) to run the cross-validation
#' in an effort to find a suitable jointly optimal, common global bandwidth for the adaptive relative risk function. See `Details'.
#' @param method A character string controlling the selector to use. There are
#' three types, based on either the mean integrated squared error (MISE)
#' (Kelsall and Diggle, 1995; default -- \code{method = "kelsall-diggle"}); a
#' weighted MISE (Hazelton, 2008 -- \code{method = "hazelton"}); or an
#' approximation to the asymptotic MISE (Davies, 2013 -- \code{method =
#' "davies"}). See `Details'.
#' @param resolution Spatial grid size; the optimisation will be based on a
#' [\code{resolution} \eqn{\times}{x} \code{resolution}] density estimate.
#' @param edge Logical value indicating whether to edge-correct the density
#' estimates used.
#' @param hp A single numeric value or a vector of length 2 giving the pilot
#' bandwidth(s) to be used for estimation of the pilot
#' densities for adaptive risk surfaces. Ignored if \code{type = "fixed"}.
#' @param pilot.symmetry A character string used to control the type of
#' symmetry, if any, to use for the bandwidth factors when computing an
#' adaptive relative risk surface. See `Details'. Ignored if \code{type = "fixed"}.
#' @param auto.optim Logical value indicating whether to automate the numerical
#' optimisation using \code{\link{optimise}}. If \code{FALSE}, the optimisation
#' criterion is evaluated over \code{hseq} (if supplied), or over a seqence of
#' values controlled by \code{hlim} and \code{seqres}.
#' @param seqres Optional resolution of an increasing sequence of bandwidth
#' values. Only used if \code{(!auto.optim && is.null(hseq))}.
#' @param parallelise Numeric argument to invoke parallel processing, giving
#' the number of CPU cores to use when \code{!auto.optim}. Experimental. Test
#' your system first using \code{parallel::detectCores()} to identify the
#' number of cores available to you.
#' @param verbose Logical value indicating whether to provide function progress
#' commentary.
#' @param ... Additional arguments such as \code{dimz} and \code{trim} to be passed to
#' the internal calls to \code{\link{multiscale.density}}.
#' @return A single numeric value of the estimated bandwidth (if
#' \code{auto.optim = TRUE}). Otherwise, a list of two numeric vectors of equal
#' length giving the bandwidth sequence (as \code{hs}) and corresponding CV
#' function value (as \code{CV}).
#'
#' @section Warning: The jointly optimal bandwidth selector can be
#' computationally expensive for large data sets and fine evaluation grid
#' resolutions. The user may need to experiment with adjusting \code{hlim} to
#' find a suitable minimum.
#'
#' @author T. M. Davies
#'
#' @seealso \code{\link{bivariate.density}}
#'
#' @references
#'
#' Davies, T. M. (2013), Jointly optimal bandwidth selection for
#' the planar kernel-smoothed density-ratio, \emph{Spatial and Spatio-temporal
#' Epidemiology}, \bold{5}, 51-65.
#'
#' Davies, T.M. and Baddeley A. (2018), Fast computation of
#' spatially adaptive kernel estimates, \emph{Statistics and Computing}, \bold{28}(4), 937-956.
#'
#' Davies, T.M. and Hazelton, M.L. (2010), Adaptive kernel
#' estimation of spatial relative risk, \emph{Statistics in Medicine},
#' \bold{29}(23) 2423-2437.
#'
#' Davies, T.M., Jones, K. and Hazelton, M.L.
#' (2016), Symmetric adaptive smoothing regimens for estimation of the spatial
#' relative risk function, \emph{Computational Statistics & Data Analysis},
#' \bold{101}, 12-28.
#'
#' Hazelton, M. L. (2008), Letter to the
#' editor: Kernel estimation of risk surfaces without the need for edge
#' correction, \emph{Statistics in Medicine}, \bold{27}, 2269-2272.
#'
#' Kelsall, J.E. and Diggle, P.J. (1995), Kernel estimation of relative risk,
#' \emph{Bernoulli}, \bold{1}, 3-16.
#'
#' Silverman, B.W. (1986), \emph{Density Estimation for Statistics and Data Analysis},
#' Chapman & Hall, New York.
#'
#' Wand, M.P. and Jones, C.M., 1995. \emph{Kernel Smoothing}, Chapman & Hall,
#' London.
#'
#' @examples
#'
#' \donttest{
#'
#' data(pbc)
#' pbccas <- split(pbc)$case
#' pbccon <- split(pbc)$control
#'
#' # FIXED (for common h)
#'
#' LSCV.risk(pbccas,pbccon)
#' LSCV.risk(pbccas,pbccon,method="hazelton")
#' hcv <- LSCV.risk(pbccas,pbccon,method="davies",auto.optim=FALSE)
#' plot(hcv[,1],log(hcv[,2]));abline(v=hcv[which.min(hcv[,2]),1],col=2,lty=2)
#'
#'
#' # ADAPTIVE (for common h0)
#'
#' LSCV.risk(pbccas,pbccon,type="adaptive")
#'
#' # change pilot bandwidths used
#' LSCV.risk(pbccas,pbccon,type="adaptive",hp=c(OS(pbccas)/2,OS(pbccon)/2))
#'
#' # specify pooled-data symmetric relative risk estimator
#' LSCV.risk(pbccas,pbccon,type="adaptive",hp=OS(pbc),pilot.symmetry="pooled")
#'
#' # as above, for Hazelton selector
#' LSCV.risk(pbccas,pbccon,type="adaptive",method="hazelton")
#' LSCV.risk(pbccas,pbccon,type="adaptive",method="hazelton",hp=c(OS(pbccas)/2,OS(pbccon)/2))
#' LSCV.risk(pbccas,pbccon,type="adaptive",method="hazelton",hp=OS(pbc),pilot.symmetry="pooled")
#' }
#'
#' @export
LSCV.risk <- function(f, g = NULL, hlim = NULL, hseq = NULL, type = c("fixed", "adaptive"),
method = c("kelsall-diggle", "hazelton", "davies"),
resolution = 64, edge = TRUE, hp = NULL, pilot.symmetry = c("none","f","g","pooled"),
auto.optim = TRUE, seqres = 30,
parallelise = NA, verbose = TRUE, ...){
if(!inherits(f,"ppp")) stop("'f' must be an object of class \"ppp\"")
if(is.null(g)){
fm <- marks(f)
if(!is.factor(fm)) marks(f) <- fm <- factor(fm)
if(nlevels(fm)!=2) stop("'f' marks must be dichotomous if 'g' unsupplied")
fs <- split(f)
f <- fs[[1]]
g <- fs[[2]]
}
if(!inherits(g,"ppp")) stop("'g' must be an object of class \"ppp\"")
W <- Window(f)
if(!identical_windows(W,Window(g))) stop("study windows for 'f' and 'g' must be identical")
if(!is.null(hlim)){
if(hlim[1]>=hlim[2]) stop("invalid 'hlim'")
} else {
md <- min(c(nndist(unique(f)),nndist(unique(g))))
hlim <- c(md,max(md*50,min(diff(W$xrange),diff(W$yrange))/6))
}
meth <- method[1]
typ <- type[1]
if(meth=="davies"&&typ=="adaptive") stop("method = \"davies\" not possible for type = \"adaptive\"")
if(typ=="fixed"){
if(auto.optim){
if(meth=="kelsall-diggle"){
if(verbose) cat("Searching for optimal Kelsall-Diggle h in [",round(hlim[1],3),",",round(hlim[2],3),"]...",sep="")
result <- optimise(LSCV.risk.single,interval=hlim,cases=f,controls=g,res=resolution,edge=edge,hazey=FALSE)$minimum
} else if(meth=="hazelton"){
if(verbose) cat("Searching for optimal Hazelton h in [",round(hlim[1],3),",",round(hlim[2],3),"]...",sep="")
result <- optimise(LSCV.risk.single,interval=hlim,cases=f,controls=g,res=resolution,edge=edge,hazey=TRUE)$minimum
} else if(meth=="davies"){
if(verbose) cat("Searching for optimal Davies h in [",round(hlim[1],3),",",round(hlim[2],3),"]\n -initialisation...",sep="")
marks(f) <- NULL
marks(g) <- NULL
pooled <- suppressWarnings(superimpose(f,g))
lambda <- LSCV.density(pooled,verbose=FALSE)
bp <- BAMprep(f,g,lambda,3,resolution)
if(verbose) cat("Done.\n -optimisation...")
result <- optimise(BAM.single,interval=hlim,edge=edge,BP=bp)$minimum
} else {
stop("invalid 'method'")
}
if(verbose) cat("Done.\n")
} else {
if(is.null(hseq)) hseq <- seq(hlim[1],hlim[2],length=seqres)
hn <- length(hseq)
if(meth=="kelsall-diggle"){
if(is.na(parallelise)){
lscv.vec <- rep(NA,hn)
if(verbose) pb <- txtProgressBar(1,hn)
for(i in 1:hn){
lscv.vec[i] <- LSCV.risk.single(hseq[i],cases=f,controls=g,res=resolution,edge=edge,hazey=FALSE)
if(verbose) setTxtProgressBar(pb,i)
}
if(verbose) close(pb)
} else {
ncores <- detectCores()
if(verbose) cat(paste("Evaluating criterion on",parallelise,"/",ncores,"cores..."))
if(parallelise>ncores) stop("cores requested exceeds available count")
registerDoParallel(cores=parallelise)
lscv.vec <- foreach(i=1:hn,.packages="spatstat",.combine=c) %dopar% {
return(LSCV.risk.single(hseq[i],cases=f,controls=g,res=resolution,edge=edge,hazey=FALSE))
}
if(verbose) cat("Done.\n")
}
} else if(meth=="hazelton"){
if(is.na(parallelise)){
lscv.vec <- rep(NA,hn)
if(verbose) pb <- txtProgressBar(1,hn)
for(i in 1:hn){
lscv.vec[i] <- LSCV.risk.single(hseq[i],cases=f,controls=g,res=resolution,edge=edge,hazey=TRUE)
if(verbose) setTxtProgressBar(pb,i)
}
if(verbose) close(pb)
} else {
ncores <- detectCores()
if(verbose) cat(paste("Evaluating criterion on",parallelise,"/",ncores,"cores..."))
if(parallelise>ncores) stop("cores requested exceeds available count")
registerDoParallel(cores=parallelise)
lscv.vec <- foreach(i=1:hn,.packages="spatstat",.combine=c) %dopar% {
return(LSCV.risk.single(hseq[i],cases=f,controls=g,res=resolution,edge=edge,hazey=TRUE))
}
if(verbose) cat("Done.\n")
}
} else if(meth=="davies"){
marks(f) <- NULL
marks(g) <- NULL
pooled <- suppressWarnings(superimpose(f,g))
lambda <- LSCV.density(pooled,verbose=FALSE)
bp <- BAMprep(f,g,lambda,3,resolution)
if(is.na(parallelise)){
lscv.vec <- rep(NA,hn)
if(verbose) pb <- txtProgressBar(1,hn)
for(i in 1:hn){
lscv.vec[i] <- BAM.single(hseq[i],edge=edge,BP=bp)
if(verbose) setTxtProgressBar(pb,i)
}
if(verbose) close(pb)
} else {
ncores <- detectCores()
if(verbose) cat(paste("Evaluating criterion on",parallelise,"/",ncores,"cores..."))
if(parallelise>ncores) stop("cores requested exceeds available count")
registerDoParallel(cores=parallelise)
lscv.vec <- foreach(i=1:hn,.packages="spatstat",.combine=c) %dopar% {
return(BAM.single(hseq[i],edge=edge,BP=bp))
}
if(verbose) cat("Done.\n")
}
} else {
stop("invalid 'method'")
}
result <- cbind(hseq,lscv.vec)
dimnames(result)[[2]] <- c("h","CV")
}
return(result)
} else if(typ=="adaptive"){
pilot.symmetry <- pilot.symmetry[1]
pdat <- list()
if(pilot.symmetry=="none"){
pdat[[1]] <- f
pdat[[2]] <- g
} else if(pilot.symmetry=="f"){
pdat[[1]] <- pdat[[2]] <- f
} else if(pilot.symmetry=="g"){
pdat[[1]] <- pdat[[2]] <- g
} else if(pilot.symmetry=="pooled"){
marks(f) <- NULL
marks(g) <- NULL
pooled <- suppressWarnings(superimpose(f,g))
pdat[[1]] <- pdat[[2]] <- pooled
} else {
stop("invalid 'pilot.symmetry' argument")
}
if(!is.null(hp)){
if(length(hp)>1){
fp <- hp[1]
gp <- hp[2]
} else {
fp <- gp <- hp[1]
}
} else {
if(verbose) cat("Selecting pilot bandwidth(s)...")
if(pilot.symmetry=="none"){
if(verbose) cat("\n --f--\n")
fp <- LSCV.density(f,verbose=FALSE)
if(verbose) cat(" --g--\n")
gp <- LSCV.density(g,verbose=FALSE)
} else {
fp <- gp <- LSCV.density(pdat[[1]],verbose=FALSE)
}
if(verbose) cat(paste("Done.\n [ Using hp(f) =",fp,"\b; hp(g) =",gp,"]\n"))
}
hhash <- mean(hlim)
if(verbose) cat("Computing multi-scale estimates...\n --f--\n")
fms <- multiscale.density(f,h0=hhash,hp=fp,h0fac=hlim/hhash,edge=ifelse(edge,"uniform","none"),resolution=resolution,intensity=FALSE,pilot.density=pdat[[1]],verbose=FALSE,...)
if(verbose) cat(" --g--\n")
gms <- multiscale.density(g,h0=hhash,hp=gp,h0fac=hlim/hhash,edge=ifelse(edge,"uniform","none"),resolution=resolution,intensity=FALSE,pilot.density=pdat[[2]],verbose=FALSE,...)
if(verbose) cat("Done.\n")
h0range <- fms$h0range
if(meth=="kelsall-diggle"){
if(auto.optim){
if(verbose) cat("Searching for optimal h0 in ",prange(h0range),"...",sep="")
h0opt <- optimise(ms.loo.risk,interval=h0range,fob=fms,gob=gms,hazey=FALSE)$minimum
if(verbose) cat("Done.\n")
return(h0opt)
} else {
if(is.null(hseq)) hseq <- seq(h0range[1],h0range[2],length=seqres)
hn <- length(hseq)
if(is.na(parallelise)){
lscv.vec <- rep(NA,hn)
if(verbose) pb <- txtProgressBar(1,hn)
for(i in 1:hn){
lscv.vec[i] <- suppressWarnings(ms.loo.risk(hseq[i],fob=fms,gob=gms,hazey=FALSE))
if(verbose) setTxtProgressBar(pb,i)
}
if(verbose) close(pb)
} else {
ncores <- detectCores()
if(verbose) cat(paste("Evaluating criterion on",parallelise,"/",ncores,"cores..."))
if(parallelise>ncores) stop("cores requested exceeds available count")
registerDoParallel(cores=parallelise)
lscv.vec <- foreach(i=1:hn,.combine=c) %dopar% { # .packages="spatstat"
return(suppressWarnings(ms.loo.risk(hseq[i],fob=fms,gob=gms,hazey=FALSE)))
}
if(verbose) cat("Done.\n")
}
}
} else if(meth=="hazelton"){
if(auto.optim){
if(verbose) cat("Searching for optimal h0 in ",prange(h0range),"...",sep="")
h0opt <- optimise(ms.loo.risk,interval=h0range,fob=fms,gob=gms,hazey=TRUE)$minimum
if(verbose) cat("Done.\n")
return(h0opt)
} else {
if(is.null(hseq)) hseq <- seq(h0range[1],h0range[2],length=seqres)
hn <- length(hseq)
if(is.na(parallelise)){
lscv.vec <- rep(NA,hn)
if(verbose) pb <- txtProgressBar(1,hn)
for(i in 1:hn){
lscv.vec[i] <- suppressWarnings(ms.loo.risk(hseq[i],fob=fms,gob=gms,hazey=TRUE))
if(verbose) setTxtProgressBar(pb,i)
}
if(verbose) close(pb)
} else {
ncores <- detectCores()
if(verbose) cat(paste("Evaluating criterion on",parallelise,"/",ncores,"cores..."))
if(parallelise>ncores) stop("cores requested exceeds available count")
registerDoParallel(cores=parallelise)
lscv.vec <- foreach(i=1:hn,.combine=c) %dopar% { # .packages="spatstat"
return(suppressWarnings(ms.loo.risk(hseq[i],fob=fms,gob=gms,hazey=TRUE)))
}
if(verbose) cat("Done.\n")
}
}
} else {
stop("invalid 'method'")
}
result <- cbind(hseq,lscv.vec)
dimnames(result)[[2]] <- c("h","CV")
return(result)
} else {
stop("invalid 'type'")
}
}
# if(!is.null(pilot.args)&&!is.list(pilot.args)) stop("'pilot.args' must be a list")
#
# if(!is.null(pilot.args$pilot.density)){
# fp <- gp <- NULL
# if(is.list(pilot.args$pilot.density)&&!is.im(pilot.args$pilot.density)){
# if(length(pilot.args$pilot.density)>1){
# fpilot <- pilot.args$pilot.density[[1]]
# gpilot <- pilot.args$pilot.density[[2]]
# if(!is.im(fpilot)||!is.im(gpilot)) stop("pilot.args$pilot.density must be a pixel image ('spatstat' class 'im') or a list of two pixel images")
# }
# } else {
# if(!is.im(pilot.args$pilot.density)||!is.ppp(pilot.args$pilot.density)) stop("pilot.args$pilot.density must be of class 'im' or 'ppp' (or a list of two)")
# fpilot <- gpilot <- pilot.args$pilot.density
# }
# } else {
# fpilot <- gpilot <- NULL
#
# if(!is.null(pilot.args$hp)){
# if(length(pilot.args$hp)>1){
# fp <- pilot.args$hp[1]
# gp <- pilot.args$hp[2]
# } else {
# fp <- gp <- pilot.args$hp[1]
# }
# } else {
# if(verbose) cat("Selecting pilot bandwidths...\n --f--\n")
# fp <- LSCV.density(f,verbose=FALSE)
# if(verbose) cat(" --g--\n")
# gp <- LSCV.density(g,verbose=FALSE)
# if(verbose) cat(paste("Done.\n [ Found hp(f) =",fp,"\b; hp(g) =",gp,"]\n"))
# }
# }
# if(!is.null(pilot.args$dimz)){
# dimz <- pilot.args$dimz[1]
# } else {
# dimz <- resolution
# }
#
# if(!is.null(pilot.args$trim)){
# trim <- pilot.args$trim
# } else {
# trim <- 5
# }
#
# the \code{pilot.args} argument. This should be supplied as a named
# list, with optional components \code{hp}, \code{pilot.density}, \code{dimz}, and \code{trim}.
# See the documentation for these arguments in \code{\link{multiscale.density}}. By default, \code{trim = 5};
# \code{dimz = resolution}; \code{pilot.density = NULL}; and
# Otherwise, the \code{pilot.density} component can be a single
# pixel \code{\link[spatstat.geom]{im}}age (defined on the same domain as the data in \code{f} and \code{g}, and also matching \code{resolution}), posing as the common pilot density (i.e. if the selected global bandwidth
# is intended for a symmetric adaptive relative risk surface, see Davies et al. 2016). Aternatively, the \code{pilot.density} component can be provided as a list
# of two pixel images -- one for the case density, the other for the control (in that order).
# The \code{hp} component is only used if \code{pilot.args$pilot.density} is unsupplied, in which case it should be a vector of length one or two giving either a common pilot bandwidth
# or the case and control pilot bandwidths respectively. Either way, unless \code{pilot.args$pilot.density} is a single pixel \code{\link[spatstat.geom]{im}}age as noted above,
# the pilot densities are computed separately using the case (\code{f}) and control (\code{g}) data supplied to the function for an asymmetric adaptive relative risk surface (Davies & Hazelton, 2010).
|