1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
#' Spatial relative risk/density ratio
#'
#' Estimates a \emph{relative risk} function based on the ratio of two 2D
#' kernel density estimates.
#'
#' The relative risk function is defined here as the ratio of the `case'
#' density to the `control' (Bithell, 1990; 1991). Using kernel density
#' estimation to model these densities (Diggle, 1985), we obtain a workable
#' estimate thereof. This function defines the risk function \emph{r} in the
#' following fashion: \cr\cr \emph{r}\code{ = (fd + epsilon*max(gd))/(gd +
#' epsilon*max(gd))}, \cr\cr where \code{fd} and \code{gd} denote the case and
#' control density estimates respectively. Note the (optional) additive
#' constants defined by \code{epsilon} times the maximum of each of the
#' densities in the numerator and denominator respectively (see Bowman and
#' Azzalini, 1997). A more recent shrinkage estimator developed by Hazelton (2023)
#' is also implemented.
#'
#' The log-risk function \emph{rho}, given by \emph{rho} = log[\emph{r}], is
#' argued to be preferable in practice as it imparts a sense of symmetry in the
#' way the case and control densities are treated (Kelsall and Diggle,
#' 1995a;b). The option of log-transforming the returned risk function is
#' therefore selected by default.
#'
#' When computing adaptive relative risk functions, the user has the option of
#' obtaining a so-called \emph{symmetric} estimate (Davies et al. 2016) via
#' \code{pilot.symmetry}. This amounts to choosing the same pilot density for
#' both case and control densities. By choosing \code{"none"} (default), the
#' result uses the case and control data separately for the fixed-bandwidth
#' pilots, providing the original asymmetric density-ratio of Davies and
#' Hazelton (2010). By selecting either of \code{"f"}, \code{"g"}, or
#' \code{"pooled"}, the pilot density is calculated based on the case, control,
#' or pooled case/control data respectively (using \code{hp[1]} as the fixed
#' bandwidth). Davies et al. (2016) noted some beneficial practical behaviour
#' of the symmetric adaptive surface over the asymmetric.
#'
#' If the user selects \code{tolerate = TRUE}, the function internally computes
#' asymptotic tolerance contours as per Hazelton and Davies (2009) and Davies
#' and Hazelton (2010). When \code{adapt = FALSE}, the reference density
#' estimate (argument \code{ref.density} in \code{\link{tolerance}}) is taken
#' to be the estimated control density. The returned pixel
#' \code{\link[spatstat.geom]{im}}age of \emph{p}-values (see `Value') is
#' interpreted as an upper-tailed test i.e. smaller \emph{p}-values represent
#' greater evidence in favour of significantly increased risk. For greater
#' control over calculation of tolerance contours, use \code{\link{tolerance}}.
#'
#' @aliases risk rrs
#'
#' @param f Either a pre-calculated object of class \code{\link{bivden}}
#' representing the `case' (numerator) density estimate, or an object of class
#' \code{\link[spatstat.geom]{ppp}} giving the observed case data. Alternatively, if
#' \code{f} is \code{\link[spatstat.geom]{ppp}} object with dichotomous
#' factor-valued \code{\link[spatstat.geom]{marks}}, the function treats the first
#' level as the case data, and the second as the control data, obviating the
#' need to supply \code{g}.
#' @param g As for \code{f}, for the `control' (denominator) density; this
#' object must be of the same class as \code{f}. Ignored if, as stated above,
#' \code{f} contains both case and control observations.
#' @param log Logical value indicating whether to return the (natural)
#' log-transformed relative risk function as recommended by Kelsall and Diggle
#' (1995a). Defaults to \code{TRUE}, with the alternative being the raw density
#' ratio.
#' @param h0 A single positive numeric value or a vector of length 2 giving the
#' global bandwidth(s) to be used for case/control density estimates;
#' defaulting to a common oversmoothing bandwidth computed via \code{\link{OS}}
#' on the pooled data using \code{nstar = "geometric"} if unsupplied. Ignored if \code{f} and \code{g} are
#' already \code{\link{bivden}} objects.
#' @param hp A single numeric value or a vector of length 2 giving the pilot
#' bandwidth(s) to be used for fixed-bandwidth estimation of the pilot
#' densities for adaptive risk surfaces. Ignored if \code{adapt = FALSE} or if
#' \code{f} and \code{g} are already \code{\link{bivden}} objects.
#' @param adapt A logical value indicating whether to employ adaptive smoothing
#' for internally estimating the densities. Ignored if \code{f} and \code{g}
#' are already \code{\link{bivden}} objects.
#' @param shrink A logical value indicating whether to compute the shrinkage estimator
#' of Hazelton (2023). This is only possible for \code{adapt=FALSE}.
#' @param shrink.args A named list of optional arguments controlling the shrinkage estimator.
#' Possible entries are \code{rescale} (a logical value indicating whether to integrate
#' to one with respect to the control distribution over the window); \code{type}
#' (a character string stipulating the shrinkage methodology to be used, either the
#' default \code{"lasso"} or the alternative \code{"Bithell"}); and \code{lambda}
#' (a non-negative numeric value determining the degree of shrinkage towards uniform
#' relative risk---when set to its default \code{NA}, it is selected via cross-validation).
#' @param tolerate A logical value indicating whether to internally calculate a
#' corresponding asymptotic p-value surface (for tolerance contours) for the
#' estimated relative risk function. See `Details'.
#' @param doplot Logical. If \code{TRUE}, an image plot of the estimated
#' relative risk function is produced using various visual presets. If
#' additionally \code{tolerate} was \code{TRUE}, asymptotic tolerance contours
#' are automatically added to the plot at a significance level of 0.05 for
#' elevated risk (for more flexible options for calculating and plotting
#' tolerance contours, see \code{\link{tolerance}} and
#' \code{\link{tol.contour}}).
#' @param pilot.symmetry A character string used to control the type of
#' symmetry, if any, to use for the bandwidth factors when computing an
#' adaptive relative risk surface. See `Details'. Ignored if \code{adapt =
#' FALSE}.
#' @param epsilon A single non-negative numeric value used for optional scaling
#' to produce additive constant to each density in the raw ratio (see
#' `Details'). A zero value requests no additive constant (default).
#' @param verbose Logical value indicating whether to print function progress
#' during execution.
#' @param ... Additional arguments passed to any internal calls of
#' \code{\link{bivariate.density}} for estimation of the requisite densities.
#' Ignored if \code{f} and \code{g} are already \code{\link{bivden}} objects.
#'
#' @return An object of class \code{"rrs"}. This is a named list with the
#' following components:
#' \item{rr}{A pixel \code{\link[spatstat.geom]{im}}age of the
#' estimated risk surface.}
#' \item{f}{An object of class \code{\link{bivden}}
#' used as the numerator or `case' density estimate.}
#' \item{g}{An object of
#' class \code{\link{bivden}} used as the denominator or `control' density
#' estimate.}
#' \item{P}{Only included if \code{tolerate = TRUE}. A pixel
#' \code{\link[spatstat.geom]{im}}age of the \emph{p}-value surface for tolerance
#' contours; \code{NULL} otherwise.}
#'
#' @author T.M. Davies
#'
#' @references
#' Bithell, J.F. (1990), An application of density estimation to
#' geographical epidemiology, \emph{Statistics in Medicine}, \bold{9},
#' 691-701.
#'
#' Bithell, J.F. (1991), Estimation of relative risk functions,
#' \emph{Statistics in Medicine}, \bold{10}, 1745-1751.
#'
#' Bowman, A.W. and Azzalini A. (1997), \emph{Applied Smoothing Techniques for Data Analysis:
#' The Kernel Approach with S-Plus Illustrations}, Oxford University Press
#' Inc., New York.
#'
#' Davies, T.M. and Hazelton, M.L. (2010), Adaptive
#' kernel estimation of spatial relative risk, \emph{Statistics in Medicine},
#' \bold{29}(23) 2423-2437.
#'
#' Davies, T.M., Jones, K. and Hazelton, M.L.
#' (2016), Symmetric adaptive smoothing regimens for estimation of the spatial
#' relative risk function, \emph{Computational Statistics & Data Analysis},
#' \bold{101}, 12-28.
#'
#' Diggle, P.J. (1985), A kernel method for smoothing
#' point process data, \emph{Journal of the Royal Statistical Society Series
#' C}, \bold{34}(2), 138-147.
#'
#' Hazelton, M.L. (2023), Shrinkage estimators of the spatial relative
#' risk function, \emph{Submitted for publication}.
#'
#' Hazelton, M.L. and Davies, T.M. (2009),
#' Inference based on kernel estimates of the relative risk function in
#' geographical epidemiology, \emph{Biometrical Journal}, \bold{51}(1),
#' 98-109.
#'
#' Kelsall, J.E. and Diggle, P.J. (1995a), Kernel estimation of
#' relative risk, \emph{Bernoulli}, \bold{1}, 3-16.
#'
#' Kelsall, J.E. and
#' Diggle, P.J. (1995b), Non-parametric estimation of spatial variation in
#' relative risk, \emph{Statistics in Medicine}, \bold{14}, 2335-2342.
#'
#' @examples
#'
#' data(pbc)
#' pbccas <- split(pbc)$case
#' pbccon <- split(pbc)$control
#' h0 <- OS(pbc,nstar="geometric")
#'
#' # Fixed (with tolerance contours)
#' pbcrr1 <- risk(pbccas,pbccon,h0=h0,tolerate=TRUE)
#'
#' # Fixed shrinkage
#' pbcrr2 <- risk(pbccas,pbccon,h0=h0,shrink=TRUE,shrink.args=list(lambda=4))
#'
#' # Asymmetric adaptive
#' pbcrr3 <- risk(pbccas,pbccon,h0=h0,adapt=TRUE,hp=c(OS(pbccas)/2,OS(pbccon)/2),
#' tolerate=TRUE,davies.baddeley=0.05)
#'
#' # Symmetric (pooled) adaptive
#' pbcrr4 <- risk(pbccas,pbccon,h0=h0,adapt=TRUE,tolerate=TRUE,hp=OS(pbc)/2,
#' pilot.symmetry="pooled",davies.baddeley=0.05)
#'
#' # Symmetric (case) adaptive; from two existing 'bivden' objects
#' f <- bivariate.density(pbccas,h0=h0,hp=2,adapt=TRUE,pilot.density=pbccas,
#' edge="diggle",davies.baddeley=0.05,verbose=FALSE)
#' g <- bivariate.density(pbccon,h0=h0,hp=2,adapt=TRUE,pilot.density=pbccas,
#' edge="diggle",davies.baddeley=0.05,verbose=FALSE)
#' pbcrr5 <- risk(f,g,tolerate=TRUE,verbose=FALSE)
#'
#' oldpar <- par(mfrow=c(2,2))
#' plot(pbcrr1,override.par=FALSE,main="Fixed")
#' plot(pbcrr2,override.par=FALSE,main="Fixed shrinkage")
#' plot(pbcrr3,override.par=FALSE,main="Asymmetric adaptive")
#' plot(pbcrr4,override.par=FALSE,main="Symmetric (pooled) adaptive")
#' par(oldpar)
#'
#' @export
risk <- function (f, g = NULL, log = TRUE, h0 = NULL, hp = h0, adapt = FALSE, shrink = FALSE, shrink.args = list(rescale = TRUE, type = c("lasso", "Bithell"), lambda = NA),
tolerate = FALSE, doplot = FALSE, pilot.symmetry = c("none", "f", "g", "pooled"), epsilon = 0, verbose = TRUE, ...)
{
if (is.null(g)) {
if (!inherits(f, "ppp"))
stop("'f' must be an object of class 'ppp' if 'g' unsupplied")
fm <- marks(f)
if (!is.factor(fm))
marks(f) <- fm <- factor(fm)
if (nlevels(fm) != 2)
stop("'f' marks must be dichotomous if 'g' unsupplied")
fs <- split(f)
f <- fs[[1]]
g <- fs[[2]]
}
else {
fc <- class(f)
gc <- class(g)
if (!all(fc == gc))
stop("'f' and 'g' must be of identical class")
if (!(inherits(f, "ppp") || inherits(f, "bivden")))
stop("'f' and 'g' must be of class 'ppp' or 'bivden'")
}
epsi <- epsilon[1]
if (epsi > 0)
warning("use of non-zero epsilon parameter is not recommended; use option 'shrink = TRUE' to employ either lasso or Bithell-type shrinkage")
if (shrink) {
epsi <- 0
lambda <- shrink.args$lambda
shrink.rescale <- shrink.args$rescale
shrink.type <- shrink.args$type[1]
if(is.null(lambda)) lambda <- NA
if(is.null(shrink.rescale)) shrink.rescale <- TRUE
if(is.null(shrink.type)) shrink.type <- "lasso"
if(adapt) stop("shrinkage only implemented for fixed bandwidth estimators")
if(is.numeric(lambda)&&(lambda<0)) stop("shrinkage parameter 'lambda' must be non-negative")
}
if (epsi < 0)
stop("invalid 'epsilon'; must be scalar and non-negative")
if (inherits(f, "ppp")) {
if (!identical_windows(Window(f), Window(g)))
stop("study windows for 'f' and 'g' must be identical")
marks(f) <- NULL
marks(g) <- NULL
pooled <- suppressWarnings(superimpose(f, g))
if (is.null(h0))
h0 <- OS(pooled, nstar = sqrt(f$n * g$n))
if (length(h0) == 1) {
h0f <- h0g <- checkit(h0[1], "'h0[1]'")
}
else {
h0f <- checkit(h0[1], "'h0[1]'")
h0g <- checkit(h0[2], "'h0[2]'")
}
if (!adapt) {
if (verbose)
message("Estimating case and control densities...",
appendLF = FALSE)
fd <- bivariate.density(f, h0 = h0f, adapt = FALSE, ...)
gd <- bivariate.density(g, h0 = h0g, adapt = FALSE, ...)
if(shrink){
if(h0f != h0g) stop("common case-control bandwidth required when employing shrinkage")
h <- c(h0f,h0g)
X1 <- fd$pp
X2 <- gd$pp
n1 <- npoints(X1)
n2 <- npoints(X2)
if (shrink.type=="lasso"){
if (is.na(lambda)) lambda <- cv.RelRisk(X1,X2,h=h)$lambda
case1 <- (fd$z-lambda/(n1*2*pi*h[1]^2))/(gd$z+lambda/(n2*2*pi*h[2]^2))
case2 <- (fd$z+lambda/(n1*2*pi*h[1]^2))/(gd$z-lambda/(n2*2*pi*h[2]^2))
logRR <- case1*0
logRR[case1 > 1] <- log(case1[case1 > 1])
logRR[1/case2 > 1] <- log(case2[1/case2 > 1])
if (shrink.rescale) logRR <- logRR - log(spatstat.univar::integral(exp(logRR)*gd$z)) #+log(n2)
} else if (shrink.type=="Bithell"){
if (is.na(lambda)) lambda <- cv.RelRisk.Bithell(X1,X2,h=h)$lambda
logRR <- log(fd$z+lambda/(n1*2*pi*h[1]^2)) - log(gd$z + lambda/(n1*2*pi*h[1]^2))
} else {
stop("invalid shrinkage type")
}
}
if (verbose)
message("Done.")
} # adaptive estimator here, still ppp
else {
if (is.null(hp))
hp <- c(h0f, h0g)
if (length(hp) == 1) {
hfp <- hgp <- checkit(hp[1], "'hp[1]'")
}
else {
hfp <- checkit(hp[1], "'hp[1]'")
hgp <- checkit(hp[2], "'hp[2]'")
}
pilot.symmetry <- pilot.symmetry[1]
pdat <- list()
if (pilot.symmetry == "none") {
pdat[[1]] <- f
pdat[[2]] <- g
}
else if (pilot.symmetry == "f") {
pdat[[1]] <- pdat[[2]] <- f
}
else if (pilot.symmetry == "g") {
pdat[[1]] <- pdat[[2]] <- g
}
else if (pilot.symmetry == "pooled") {
pdat[[1]] <- pdat[[2]] <- pooled
}
else {
stop("invalid 'pilot.symmetry' argument")
}
if (verbose)
message("Estimating case density...", appendLF = FALSE)
fd <- bivariate.density(f, h0 = h0f, hp = hfp, adapt = TRUE,
pilot.density = pdat[[1]], verbose = FALSE, ...)
if (verbose)
message("Done.\nEstimating control density...",
appendLF = FALSE)
gd <- bivariate.density(g, h0 = h0g, hp = hgp, adapt = TRUE,
pilot.density = pdat[[2]], verbose = FALSE, ...)
if (verbose)
message("Done.")
}
}
else { ##here bivden
if (!compatible(f$z, g$z))
stop("incompatible images in 'f' and 'g'... kernel estimates must be evaluated on identical domains")
fd <- f
gd <- g
fda <- is.na(fd$gamma) || is.na(fd$geometric)
gda <- is.na(gd$gamma) || is.na(gd$geometric)
adapt <- switch(as.character(fda + gda), `0` = TRUE,
`2` = FALSE, NA)
if (is.na(adapt))
stop("'f' and 'g' smoothed differently... must both be either fixed or adaptive")
if(shrink){
if(!is.na(f$gamma)||!is.na(g$gamma)) stop("shrinkage only implemented for fixed bandwidth estimates")
h0f <- fd$h0
h0g <- gd$h0
if(f$h0!=g$h0) stop("common case-control bandwidth required when employing shrinkage")
h <- c(h0f,h0g)
X1 <- fd$pp
X2 <- gd$pp
n1 <- npoints(X1)
n2 <- npoints(X2)
if (shrink.type=="lasso"){
if (is.na(lambda)) lambda <- cv.RelRisk(X1,X2,h=h)$lambda
case1 <- (fd$z-lambda/(n1*2*pi*h[1]^2))/(gd$z+lambda/(n2*2*pi*h[2]^2))
case2 <- (fd$z+lambda/(n1*2*pi*h[1]^2))/(gd$z-lambda/(n2*2*pi*h[2]^2))
logRR <- case1*0
logRR[case1 > 1] <- log(case1[case1 > 1])
logRR[1/case2 > 1] <- log(case2[1/case2 > 1])
if (shrink.rescale) logRR <- logRR - log(spatstat.univar::integral(exp(logRR)*gd$z))#+log(n2)
} else if (shrink.type=="Bithell"){
if (is.na(lambda)) lambda <- cv.RelRisk.Bithell(X1,X2,h=h)$lambda
logRR <- log(fd$z+lambda/(n1*2*pi*h[1]^2)) - log(gd$z + lambda/(n1*2*pi*h[1]^2))
} else {
stop("invalid shrinkage type")
}
}
}
## here final risk
if (!shrink){
eg <- epsi * max(gd$z)
if (log) suppressWarnings(rr <- log(fd$z + eg) - log(gd$z + eg))
else rr <- (fd$z + eg)/(gd$z + eg)
} else {
if (log) rr <- logRR
else rr <- exp(logRR)
# fd <- list(z=f1,h0=h0,hp=NA,h=NA,him=NA,q=NA,gamma=NA,geometric=NA,pp=X1)
# gd <- list(z=f2,h0=h0,hp=NA,h=NA,him=NA,q=NA,gamma=NA,geometric=NA,pp=X2)
# class(fd) <- class(gd) <- "bivden"
}
if(tolerate & shrink) warning("tolerance contours not computed when 'shrink=TRUE'")
ps <- NULL
if (tolerate & !shrink) {
if (verbose)
message("Calculating tolerance contours...",
appendLF = FALSE)
if (adapt)
ps <- tol.asy.ada(fd, gd, 0.025, verbose = FALSE)$p
else ps <- tol.asy.fix(fd, gd, gd, verbose = FALSE)$p
if (verbose)
message("Done.")
}
if (doplot) {
plot.im(rr, main = "", box = FALSE, ribargs = list(box = TRUE))
axis(1)
axis(2)
box(bty = "l")
plot(Window(fd$pp), add = TRUE)
if (!is.null(ps))
contour(fd$z$xcol, fd$z$yrow, t(as.matrix(ps)), levels = 0.05,
add = TRUE)
return(invisible(NULL))
}
result <- list(rr = rr, f = fd, g = gd, P = ps)
class(result) <- "rrs"
return(result)
}
|