File: lextrB.R

package info (click to toggle)
r-cran-spatialreg 1.2-6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 920 kB
  • sloc: ansic: 682; makefile: 2
file content (340 lines) | stat: -rw-r--r-- 10,584 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright 2015 by Roger S. Bivand, Yongwan Chun and Daniel A. Griffith

l_max <- function(lw, zero.policy=TRUE, control=list()) {
    tol <- control$tol
    if (is.null(tol)) tol <- .Machine$double.eps^(1/2)
    stopifnot(is.numeric(tol))
    stopifnot(length(tol) == 1)
    trace <- control$trace
    if (is.null(trace)) trace <- FALSE
    stopifnot(is.logical(trace))
    stopifnot(length(trace) == 1)
# n number of observations
    n <- as.integer(length(lw$neighbours))
    maxiter <- control$maxiter
    if (is.null(maxiter)) maxiter <- 6L*(n-2L)
    stopifnot(is.integer(maxiter))
    stopifnot(length(maxiter) == 1)
    if (lw$style != "B" && trace)
      cat("l_max: weights style is: ", lw$style, "\n")
    if (!is.symmetric.glist(lw$neighbours, lw$weights) && trace)
        cat("l_max: asymmetric weights\n")
# size of neighbour sets
#    ni <- card(lw$neighbours)
# size of generalised neighbour weights
    ni <- sapply(lw$weights, sum)
# initialize variables
    constant <- sum(ni^2)
    nil <- ni/constant
    denom <- sum(nil)
    lamlag <- denom/n
    constant0 <- constant
# start while loop
    keepgoing <- TRUE; k <- 0L
    while (keepgoing) {
        k <- k + 1L
        nik <- lag.listw(lw, nil, zero.policy=zero.policy)
        sumsqnik <- sum(nik^2)
        numer <- sum(nik)
        constant <- sqrt(sumsqnik)
        if (abs(denom) < .Machine$double.eps^2) {
            msg <- "divide by zero"
            keepgoing <- FALSE
            break
        }
        lambda1 <- numer/denom
        if (trace) cat(k, lambda1, numer, denom, constant, "\n")
#        if (abs(lamlag - lambda1) < tol) {
        if (abs(constant0 - constant) < tol) {
            lambda1 <- constant
            msg <- "converged"
            keepgoing <- FALSE
            break
        }
#        lamlag <- lambda1
        denom <- numer/constant
        nil <- nik/constant
        constant0 <- constant
        if (k > maxiter) {
            msg <- "iteration limit exceeded"
            keepgoing <- FALSE
            break
      }
    }
    attr(lambda1, "k") <- k
    attr(lambda1, "msg") <- msg
    attr(lambda1, "constant") <- constant
    attr(lambda1, "e1") <- nik
    lambda1
}


lextrB <- function(lw, zero.policy=TRUE, control=list()) {
# must be binary listw object
  stopifnot(lw$style == "B")
  if (!is.symmetric.glist(lw$neighbours, lw$weights))
    stop("lextrB: asymmetric weights\n")
  tol <- control$tol
  if (is.null(tol)) tol <- .Machine$double.eps^(1/2)
  stopifnot(is.numeric(tol))
  stopifnot(length(tol) == 1)
  control$tol <- tol
  trace <- control$trace
  if (is.null(trace)) trace <- FALSE
  control$trace <- trace
  stopifnot(is.logical(trace))
  stopifnot(length(trace) == 1)
# n number of observations
  lwcard <- card(lw$neighbours)
  n <- as.integer(length(lwcard))
  stopifnot(attr(lw$weights, "mode") == "binary")
  maxiter <- control$maxiter
  if (is.null(maxiter)) maxiter <- 6L*(n-2L)
  stopifnot(is.integer(maxiter))
  stopifnot(length(maxiter) == 1)
  control$maxiter <- maxiter
  useC <- control$useC
  if (is.null(useC)) useC <- TRUE
  stopifnot(is.logical(useC))
  stopifnot(length(useC) == 1)
  control$useC <- useC
  resl1 <- l_max(lw=lw, zero.policy=zero.policy, control=control)
  if (attr(resl1, "msg") != "converged") warning("lextrB: l_max not converged")
  resln_2.1 <- lminC_2.1(lw=lw, y=attr(resl1, "e1")/c(resl1), crd=lwcard,
    zero.policy=zero.policy, control=control)
  if (attr(resln_2.1, "msg") != "converged") warning("lextrB: 2.1 not converged")
  resln_2.2 <- lminC_2.2(lw, resln_2.1, crd=lwcard, zero.policy=zero.policy,
    control=control)
  lambda.n <- lminC_2.3(lw, resln_2.2, attr(resln_2.1, "sse"), crd=lwcard,
    zero.policy=zero.policy, control=control)
  if (attr(lambda.n, "msg") != "converged") warning("lextrB: 2.3 not converged")
  res <- c(lambda_n=c(lambda.n), lambda_1=c(resl1))
  attr(res, "en1") <- cbind(en=attr(lambda.n, "en"),
    e1=attr(resl1, "e1")/c(resl1))
  res
}

lminC_2.3 <- function(lw, y, sse.new, crd, zero.policy=TRUE,
  control=list(
  trace=TRUE,
  tol=.Machine$double.eps^(1/2),
  maxiter=6*(length(lw$neighbours)-2), useC=FALSE)) {
## 2-3. updaing Ei with predicted values Ei_hat until a new
# sse gets smaller (but it needs to be smaller than 1e-15)
#
# must be binary listw object
  stopifnot(lw$style == "B")
  tol <- control$tol
  if (is.null(tol)) tol <- .Machine$double.eps^(1/2)
  trace <- control$trace
  if (is.null(trace)) trace <- TRUE
# n number of observations
  n <- length(lw$neighbours)
  maxiter <- control$maxiter
  if (is.null(maxiter)) maxiter <- 6*(n-2)
  cy <-  lag.listw(lw, y, zero.policy=zero.policy)
  keepgoing4 <- TRUE
  iter <- 0L
  RV.lm.fit <- paste(R.version$major, R.version$minor, sep=".") > "3.0.3"
  if (!RV.lm.fit) .lm.fit <- function() {}
  while(keepgoing4) {
    iter <- iter + 1L
    if (RV.lm.fit) {
      lm.y <- .lm.fit(x=cbind(1,cy), y=y)#lm(y ~ cy)
    } else {
      lm.y <- lm.fit(x=cbind(1,cy), y=y)
    }
    sse.new <- crossprod(lm.y$residuals)#summary(lm.y)$sigma
    beta <- lm.y$coefficients
 
### lw$neighbours y cy beta
### n.switch4 y
    ttol <- tol
    if (control$useC) {
#      crd <- card(lw$neighbours)
      uCres23 <- .Call("lmin23", lw$neighbours, y, cy, crd, beta, ttol,
        PACKAGE="spatialreg")
      y <- uCres23[[1]]
      n.switch4 <- uCres23[[2]]
    } else {
      n.switch4 <- 0L
      for (i in 1:n) {
        neis <- lw$neighbours[[i]] 
        if (neis[1] > 0L) {
          if (abs(y[i] - (beta[1] + beta[2] * cy[i])) > ttol) {
            tmp <- y[i]
            y[i] <- beta[1] + beta[2] * cy[i] 
            cy[neis] <- cy[neis] - tmp + y[i]
            n.switch4 = n.switch4 + 1L
          }
        }  
      }
    } 
###  
    y <- y - mean(y)
    y <- y/sqrt(sum(y^2))
    cy <- lag.listw(lw, y, zero.policy=zero.policy)
    if (trace) cat("Phase 2.3:", iter, n.switch4, sse.new, "\n")
    if (sse.new <= tol) {
      msg <- "converged"
      break#keepgoing4 <- FALSE
    }  
    if (iter >= maxiter) {
      msg <- "iteration limit exceeded"
      break#keepgoing4 <- FALSE
    } 
    sse.old <- sse.new
  }
   
  lambda.n <- sum(y * cy)/sum(y^2)
  attr(lambda.n, "iter") <- iter
  attr(lambda.n, "msg") <- msg
  attr(lambda.n, "en") <- y
  lambda.n
}


lminC_2.2 <- function(lw, res_2.1, crd, zero.policy=TRUE,
  control=list(
  trace=TRUE,
  tol=.Machine$double.eps^(1/2),
  maxiter=6*(length(lw$neighbours)-2), useC=FALSE)) {
## 2-2. updaing Ei with predicted values Ei_hat based on
# slightly different t1 and t2 
## Ei_hat changes with an update of Ei and lag.Ei at every iteration.
# So predicted values are calculated using coefficients. 

# must be binary listw object
  stopifnot(lw$style == "B")
  tol <- control$tol
  if (is.null(tol)) tol <- .Machine$double.eps^(1/2)
  trace <- control$trace
  if (is.null(trace)) trace <- TRUE
# n number of observations
  n <- length(lw$neighbours)
  maxiter <- control$maxiter
  if (is.null(maxiter)) maxiter <- 6*(n-2)
  beta <- attr(res_2.1, "lm.y")$coefficients
  y <- c(res_2.1)
  cy <- lag.listw(lw, y, zero.policy=zero.policy)
### n.switch3 lw$neighbours y cy beta
### n.switch3 y
  if (control$useC) {
#    crd <- card(lw$neighbours)
    uCres22 <- .Call("lmin22", lw$neighbours, y, cy, crd, beta,
      PACKAGE="spatialreg")
    y <- uCres22[[1]]
    n.switch3 <- uCres22[[2]]
  } else {
    n.switch3 <- 0L
    for (i in 1:n) {
      neis <- lw$neighbours[[i]] 
      if (neis[1] > 0L) {
        t1 <- abs(y[i] - cy[i]) + sum(abs(y[neis] - cy[neis]))
        t2 <- abs(beta[1] + beta[2] * cy[i] - cy[i]) + sum(abs(y[neis] - 
          (cy[neis] - y[i] + beta[1] + beta[2] * cy[i])))
        if (t1 <= t2) {
          tmp <- y[i]
          y[i] <- beta[1] + beta[2] * cy[i] 
          cy[neis] <- cy[neis] - tmp + y[i]
          n.switch3 <- n.switch3 + 1L
        }
      }
    }
  }
###
  y <- y - mean(y)
  y <- y/sqrt(sum(y^2))
  if (trace) cat("Phase 2.2:", n.switch3, "\n")
  y
}

lminC_2.1 <- function(lw, y, crd, zero.policy=TRUE,
  control=list(
  trace=TRUE,
  tol=.Machine$double.eps^(1/2),
  maxiter=6*(length(lw$neighbours)-2), useC=FALSE)) {
## 2-1. updaing Ei with lag.Ei based on comparison of test1 (t1)
# and test2 (t2)
#
# must be binary listw object
  stopifnot(lw$style == "B")
  tol <- control$tol
  if (is.null(tol)) tol <- .Machine$double.eps^(1/2)
  trace <- control$trace
  if (is.null(trace)) trace <- TRUE
# n number of observations
  n <- length(lw$neighbours)
  maxiter <- control$maxiter
  if (is.null(maxiter)) maxiter <- 6*(n-2)
  y <- y - mean(y)
  y <- y/(sqrt(sum(y^2)))
  cy <- lag.listw(lw, y, zero.policy=zero.policy)
  iter <- 0L
# 998 while
  keepgoing2 <- TRUE
  sse.old <- n
  iter <- 0L
  RV.lm.fit <- paste(R.version$major, R.version$minor, sep=".") > "3.0.3"
  if (!RV.lm.fit) .lm.fit <- function() {}
  while (keepgoing2) {
    iter <- iter + 1L
### lw$neighbours y cy
### n.switch y
    if (control$useC) {
#      crd <- card(lw$neighbours)
      uCres21 <- .Call("lmin21", lw$neighbours, y, cy, crd,
        PACKAGE="spatialreg")
      y <- uCres21[[1]]
      n.switch <- uCres21[[2]]
    } else {
      n.switch <- 0L
      for (i in 1:n) {
        neis <- lw$neighbours[[i]] 
        if (neis[1] > 0L) {
          t1 <- abs(y[i] - cy[i]) + sum(abs(y[neis] - cy[neis]))
          t2 <- abs(-2 * cy[i]) + sum(abs(y[neis] -
            (cy[neis] - y[i] - cy[i])))
          if (t1 <= t2) {
            tmp <- y[i]
            y[i] <- cy[i] * -1                     # update Ei with lag.Ei
            cy[neis] <- cy[neis] - tmp + y[i]
# update lag.Ei with replacing old Ei with new Ei
            n.switch <- n.switch + 1L
          }
        }
      }
###
    }
    y <- y - mean(y)
    y <- y/sqrt(sum(y^2))
    cy <- lag.listw(lw, y, zero.policy=zero.policy)

    if (RV.lm.fit) {
      lm.y <- .lm.fit(x=cbind(1,cy), y=y)#lm(y ~ cy)
    } else {
      lm.y <- lm.fit(x=cbind(1,cy), y=y)
    }
#    lm.y <- .lm.fit(x=cbind(1,cy), y=y)#lm(y ~ cy)
    sse.new <- crossprod(lm.y$residuals)#summary(lm.y)$sigma

    if (iter > maxiter) {
      msg <- "iteration limit exceeded"
      break #keepgoing2 <- FALSE
    }

    if (sse.new < sse.old) {            # Dan used sum of squares of errors. Maybe need to consider to replace sigma with SSE if this code produces a different outcome 
      if (trace) cat("Phase 2.1:", iter, n.switch, sse.old, sse.new, "\n")
      sse.old <- sse.new
    } else {
      msg <- "converged"
      break #keepgoing2 <- FALSE
    } 
  }
  attr(y, "iter") <- iter
  attr(y, "msg") <- msg
  attr(y, "sse") <- sse.new
  attr(y, "lm.y") <- lm.y
  y
}