1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
# Copyright 2006 by Luc Anselin and Roger Bivand
# modified by Gianfranco Piras on December 11, 2009 (added the argument legacy)
# and on March 12, 2010 (added the argument W2X)
stsls <- function(formula, data = list(), listw, zero.policy=NULL,
na.action=na.fail, robust=FALSE, HC=NULL, legacy=FALSE, W2X=TRUE) {
if (!inherits(listw, "listw"))
stop("No neighbourhood list")
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spatialregOptions)
stopifnot(is.logical(zero.policy))
if (!inherits(formula, "formula")) formula <- as.formula(formula)
mt <- terms(formula, data = data)
mf <- lm(formula, data, na.action=na.action, method="model.frame")
na.act <- attr(mf, "na.action")
if (!is.null(na.act)) {
subset <- !(1:length(listw$neighbours) %in% na.act)
listw <- subset(listw, subset, zero.policy=zero.policy)
}
y <- model.extract(mf, "response")
if (any(is.na(y))) stop("NAs in dependent variable")
X <- model.matrix(mt, mf)
if (any(is.na(X))) stop("NAs in independent variable")
if (robust) {
if (is.null(HC)) HC <- "HC0"
if (!any(HC %in% c("HC0", "HC1")))
stop("HC must be one of HC0, HC1")
}
# modified to pass zero.policy Juan Tomas Sayago 100913
Wy <- lag.listw(listw, y, zero.policy=zero.policy)
dim(Wy) <- c(nrow(X),1)
colnames(Wy) <- c("Rho")
# WX <- lag.listw(W,X[,2:ncol(X)])
n <- NROW(X)
m <- NCOL(X)
xcolnames <- colnames(X)
K <- ifelse(xcolnames[1] == "(Intercept)", 2, 1)
if (m > 1) {
WX <- matrix(nrow=n, ncol=(m-(K-1)))
if(W2X) WWX <- matrix(nrow = n, ncol = ncol(WX) )
for (k in K:m) {
wx <- lag.listw(listw, X[,k], zero.policy=zero.policy)
if(W2X) wwx <- lag.listw(listw, wx, zero.policy = zero.policy)
if (any(is.na(wx)))
stop("NAs in lagged independent variable")
WX[,(k-(K-1))] <- wx
if(W2X) WWX[, (k - (K - 1))] <- wwx
}
if(W2X) inst <- cbind(WX, WWX)
else inst <- WX
}
if (K == 2 && listw$style != "W") {
# modified to meet other styles, email from Rein Halbersma
wx1 <- as.double(rep(1, n))
wx <- lag.listw(listw, wx1, zero.policy=zero.policy)
if(W2X) wwx <- lag.listw(listw, wx, zero.policy=zero.policy)
if (m > 1) {
inst <- cbind(wx, inst)
if(W2X) inst <- cbind(wwx, inst)
} else {
inst <- matrix(wx, nrow=n, ncol=1)
if(W2X) inst <- cbind(inst, wwx)
}
# colnames(inst) <- xcolnames
}
# if (listw$style == "W") colnames(WX) <- xcolnames[-1]
result <- tsls(y=y, yend=Wy, X=X, Zinst=inst, robust=robust, HC=HC,
legacy=legacy)
result$zero.policy <- zero.policy
result$robust <- robust
if (robust) result$HC <- HC
result$legacy <- legacy
result$listw_style <- listw$style
result$call <- match.call()
class(result) <- "Stsls"
result
}
# result <- list(coefficients=biv,var=varb,s2=s2,
# residuals=e)
print.Stsls <- function(x, ...) {
cat("\nCall:\n")
print(x$call)
cat("\nCoefficients:\n")
print(coef(x))
cat("\n")
invisible(x)
}
summary.Stsls <- function(object, correlation = FALSE, ...) {
rest.se <- sqrt(diag(object$var))
# varnames <- names(object$coefficients)
object$Coef <- cbind(object$coefficients, rest.se,
object$coefficients/rest.se,
2*(1-pnorm(abs(object$coefficients/rest.se))))
if (object$robust) colnames(object$Coef) <- c("Estimate",
paste(object$HC, "std. Error"), "z value", "Pr(>|z|)")
else colnames(object$Coef) <- c("Estimate", "Std. Error",
"t value", "Pr(>|t|)")
rownames(object$Coef) <- names(object$coefficients)
if (correlation) {
object$correlation <- diag((diag(object$var))
^(-1/2)) %*% object$var %*%
diag((diag(object$var))^(-1/2))
dimnames(object$correlation) <- dimnames(object$var)
}
structure(object, class=c("summary.Stsls", class(object)))
}
print.summary.Stsls <- function(x, digits = max(5, .Options$digits - 3),
signif.stars = FALSE, ...) {
cat("\nCall:", deparse(x$call), sep = "", fill=TRUE)
cat("\nResiduals:\n")
resid <- residuals(x)
nam <- c("Min", "1Q", "Median", "3Q", "Max")
rq <- if (length(dim(resid)) == 2L)
structure(apply(t(resid), 1, quantile), dimnames = list(nam,
dimnames(resid)[[2]]))
else structure(quantile(resid), names = nam)
print(rq, digits = digits, ...)
if (x$zero.policy) {
zero.regs <- attr(x, "zero.regs")
if (!is.null(zero.regs))
cat("Regions with no neighbours included:\n",
zero.regs, "\n")
}
cat("\nCoefficients:", x$coeftitle, "\n")
coefs <- x$Coef
printCoefmat(coefs, signif.stars=signif.stars, digits=digits,
na.print="NA")
correl <- x$correlation
cat("\n")
if (x$robust && x$legacy) cat("Asymptotic robust residual variance: ")
# if (x$legacy) cat("Asymptotic robust residual variance: ")
else cat("Residual variance (sigma squared): ")
cat(format(signif(x$sse/x$df, digits)), ", (sigma: ",
format(signif(sqrt(x$sse/x$df), digits)), ")\n", sep="")
if (!is.null(correl)) {
p <- NCOL(correl)
if (p > 1) {
cat("\nCorrelation of Coefficients:\n")
correl <- format(round(correl, 2), nsmall = 2,
digits = digits)
correl[!lower.tri(correl)] <- ""
print(correl[-1, -p, drop = FALSE], quote = FALSE)
}
}
cat("\n")
invisible(x)
}
residuals.Stsls <- function(object, ...) {
if (is.null(object$na.action))
object$residuals
else napredict(object$na.action, object$residuals)
}
coef.Stsls <- function(object, ...) object$coefficients
coef.summary.Stsls <- function(object, ...) object$Coef
deviance.Stsls <- function(object, ...) object$sse
impacts.Stsls <- function(obj, ..., tr=NULL, R=NULL, listw=NULL, evalues=NULL,
tol=1e-6, empirical=FALSE, Q=NULL) {
if (is.null(listw) && !is.null(obj$listw_style) &&
obj$listw_style != "W")
stop("Only row-standardised weights supported")
rho <- obj$coefficients[1]
beta <- obj$coefficients[-1]
icept <- grep("(Intercept)", names(beta))
iicept <- length(icept) > 0
if (iicept) {
P <- matrix(beta[-icept], ncol=1)
bnames <- names(beta[-icept])
} else {
P <- matrix(beta, ncol=1)
bnames <- names(beta)
}
p <- length(beta)
n <- length(obj$residuals)
mu <- c(rho, beta)
Sigma <- obj$var
irho <- 1
drop2beta <- 1
res <- intImpacts(rho=rho, beta=beta, P=P, n=n, mu=mu, Sigma=Sigma,
irho=irho, drop2beta=drop2beta, bnames=bnames, interval=NULL,
type="lag", tr=tr, R=R, listw=listw, evalues=evalues, tol=tol,
empirical=empirical, Q=Q, icept=icept, iicept=iicept, p=p,
zero_fill=NULL, dvars=NULL)
attr(res, "iClass") <- class(obj)
if (!is.null(obj$robust)) {
attr(res, "robust") <- obj$robust
attr(res, "HC") <- obj$HC
}
res
}
# Copyright 2004 by Luc Anselin
# spatial two stage least squares
# Usage:
# stsls(listw,y,X,robust)
# Arguments:
# listw: spatial weights file as listw object
# y: dependent variable as vector
# X: explanatory variables as matrix using cbind(1,var1,...)
# robust: flag for heteroskedastic robust estimator
# Details:
# calls tsls with y as dependent variable, spatial lag of y
# as endogenous, X as exogenous variables, spatial lags of
# X as instruments and robust as specified
# Value:
# a list as returned by tsls
# coefficients: coefficient estimates
# se: (asymptotic) standard error of estimates
# t: value of asymptotic t-test statistic
# p: probability of t-test (tail, two-sided)
# var: coefficient variance matrix
# s2: residual variance (using degrees of freedom N-K)
# residuals: observed y - predicted y, to be used in diagnostics
stsls_old <- function(W,y,X,robust=FALSE) {
Wy <- lag.listw(W,y)
dim(Wy) <- c(nrow(X),1)
colnames(Wy) <- c("Rho")
WX <- lag.listw(W,X[,2:ncol(X)])
result <- tsls(y,Wy,X,WX,robust)
result
}
# Copyright 2004 by Luc Anselin
# heteroskedastic two stage least squares
# helper function, called from tsls
# Usage:
# htsls(y,Z,Q,e)
# Arguments:
# y: dependent variable as vector
# Z: matrix of endogenous and exogenous variables
# Q: matrix of instruments
# e: vector of 2SLS residuals
# Details:
# uses White consistent estimator for XOmegaX
# Value:
# a list with results
# coefficients: coefficient estimates
# se: (asymptotic) standard error of coefficients
# t: value of asymptotic t-test statistic
# p: probability of t-test (tail, two-sided)
# var: coefficient variance matrix
# s2: residual variance (using N)
# residuals: observed y - predicted y
htsls <- function(y,Z,Q,e) {
e2 <- e^2
oQ <- e2[,1] * Q
QoQ <- crossprod(Q,oQ)
QoQi <- solve(QoQ)
QZ <- crossprod(Q,Z)
ZQoQ <- crossprod(QZ,QoQi)
v <- ZQoQ %*% QZ
vi <- solve(v)
Qy <- crossprod(Q,y)
ZQy <- ZQoQ %*% Qy
biv <- vi %*% ZQy
yp <- Z %*% biv
e <- y - yp
biv <- biv[,1,drop=TRUE]
sse <- c(crossprod(e,e)) # / nrow(Z)
df <- nrow(Z)
# sebiv <- sqrt(diag(vi))
# tbiv <- biv / sebiv
# pbiv <- pnorm(abs(tbiv),lower.tail=FALSE) * 2
result <- list(coefficients=biv,
# se=sebiv,t=tbiv,p=pbiv,
var=vi,sse=sse,residuals=c(e),df=df)
result
}
# Copyright 2004 by Luc Anselin
# two stage least squares
# Usage:
# tsls(y,yend,X,Zinst,robust=FALSE)
# Arguments:
# y: dependent variable as vector
# yend: endogenous variables as vector or matrix (using cbind)
# X: matrix of exogenous variables, including constant
# Zinst: matrix of instruments (using cbind)
# robust: flag for heteroskedastic robust estimator
# Details:
# standard two stage least squares, using explicit two stages
# uses degrees of freedom in computation of residual variance (N-K not N)
# calls htsls when robust is TRUE
# Value:
# a list with results:
# coefficients: coefficient estimates
# se: (asymptotic) standard error of estimates
# t: value of asymptotic t-test statistic
# p: probability of t-test (tail, two-sided)
# var: coefficient variance matrix
# s2: residual variance (using degrees of freedom N-K)
# residuals: observed y - predicted y, to be used in diagnostics
tsls <- function(y,yend,X,Zinst,robust=FALSE, HC="HC0", legacy=FALSE) {
# colnames(X) <- c("CONSTANT",colnames(X)[2:ncol(X)])
Q <- cbind(X,Zinst)
Z <- cbind(yend,X)
df <- nrow(Z) - ncol(Z)
# QQ <- crossprod(Q,Q)
Qye <- crossprod(Q,yend)
Qr <- qr(Q)
bz <- chol2inv(Qr$qr)%*% Qye
# bz <- solve(QQ,Qye)
yendp <- Q %*% bz
Zp <- cbind(yendp,X)
Qr <- qr(Zp)
# ZpZp <- crossprod(Zp,Zp)
# ZpZpi <- solve(ZpZp)
ZpZpi <- chol2inv(Qr$qr)
Zpy <- crossprod(Zp,y)
biv <- ZpZpi %*% Zpy
# biv <- crossprod(ZpZpi,Zpy)
yp <- Z %*% biv
biv <- biv[,1,drop=TRUE]
names(biv) <- colnames(Zp)
e <- y - yp
if (robust) {
if (legacy) {
result <- htsls(y,Z,Q,e)
} else {
sse <- c(crossprod(e,e))
if (HC == "HC0") omega <- as.numeric(e^2)
else if (HC == "HC1")
omega <- (nrow(X)/df) * as.numeric(e^2)
else stop("invalid HC choice")
ZoZ<-crossprod(Zp,(Zp*omega))
varb<-ZpZpi%*%ZoZ%*%ZpZpi
result <- list(coefficients=biv,
var=varb,
sse=sse,
residuals=c(e),
df=df)
}
} else {
sse <- c(crossprod(e,e))
s2 <- sse / df
varb <- ZpZpi * s2
# sebiv <- sqrt(diag(varb))
# tbiv <- biv / sebiv
# pbiv <- pnorm(abs(tbiv),lower.tail=FALSE) * 2
result <- list(coefficients=biv,
# se=sebiv,t=tbiv,p=pbiv,
var=varb,
sse=sse,
residuals=c(e),
df=df)
}
result
}
|