1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
|
\name{lextrB}
\alias{lextrB}
\alias{lextrW}
\alias{lextrS}
\alias{l_max}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{Find extreme eigenvalues of binary symmetric spatial weights}
\description{The functions find extreme eigenvalues of binary symmetric spatial weights, when these form planar graphs; general weights are not permiited. \code{l_max} finds the largest eigenvalue using Rayleigh quotient methods of any \dQuote{listw} object. \code{lextrB} first calls \code{l_max}, and uses its output to find the smallest eigenvalue in addition for binary symmetric spatial weights. \code{lextrW} extends these to find the smallest eigenvalue for intrinsically symmetric row-standardized binary weights matrices (transformed to symmetric through similarity internally). \code{lextrS} does the same for variance-stabilized (\dQuote{S} style) intrinsically symmetric binary weights matrices (transformed to symmetric through similarity internally).}
\usage{
lextrB(lw, zero.policy = TRUE, control = list())
lextrW(lw, zero.policy=TRUE, control=list())
lextrS(lw, zero.policy=TRUE, control=list())
l_max(lw, zero.policy=TRUE, control=list())
}
%- maybe also 'usage' for other objects documented here.
\arguments{
\item{lw}{a binary symmetric \code{listw} object from, for example, \code{nb2listw} with style \dQuote{B} for \code{lextrB}, style \dQuote{W} for \code{lextrW} and style \dQuote{S} for \code{lextrS}; for \code{l_max}, the object may be asymmetric and does not have to be binary}
\item{zero.policy}{default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA}
\item{control}{a list of control arguments}
}
\section{Control arguments}{
\describe{
\item{trace}{report values in while loops, default NULL assuming FALSE; logical}
\item{tol}{tolerance for breaking while loops, default \code{.Machine$double.eps^(1/2)}; numeric}
\item{maxiter}{maximum number of iterations in while loops, default \code{6 * (length(lw$neighbours) - 2}; integer}
\item{useC}{use C code, default TRUE, logical (not in \code{l_max})}
}
}
\value{
The functions return approximations to the extreme eigenvalues with the eigenvectors returned as attributes of this object.
}
\references{Griffith, D. A. (2004). Extreme eigenfunctions of adjacency matrices for planar graphs employed in spatial analyses. \emph{Linear Algebra and its Applications}, 388:201--219.}
\author{Roger Bivand, Yongwan Chun, Daniel Griffith}
\note{It may be necessary to modify control arguments if warnings about lack of convergence are seen.}
\examples{
data(boston, package="spData")
#require(spdep, quietly=TRUE)
ab.listb <- spdep::nb2listw(boston.soi, style="B")
er <- range(eigenw(ab.listb))
er
res_1 <- lextrB(ab.listb)
c(res_1)
run <- FALSE
if (require("RSpectra", quietly=TRUE)) run <- TRUE
if (run) {
B <- as(ab.listb, "CsparseMatrix")
eigs(B, k=1, which="SR")$values
}
if (run) {
eigs(B, k=1, which="LR")$values
}
k5 <- spdep::knn2nb(spdep::knearneigh(boston.utm, k=5))
c(l_max(spdep::nb2listw(k5, style="B")))
max(Re(eigenw(spdep::nb2listw(k5, style="B"))))
c(l_max(spdep::nb2listw(k5, style="C")))
max(Re(eigenw(spdep::nb2listw(k5, style="C"))))
ab.listw <- spdep::nb2listw(boston.soi, style="W")
er <- range(eigenw(similar.listw(ab.listw)))
er
res_1 <- lextrW(ab.listw)
c(res_1)
if (run) {
B <- as(similar.listw(ab.listw), "CsparseMatrix")
eigs(B, k=1, which="SR")$values
}
if (run) {
eigs(B, k=1, which="LR")$values
}
\dontrun{
ab.listw <- spdep::nb2listw(boston.soi, style="S")
er <- range(eigenw(similar.listw(ab.listw)))
er
res_1 <- lextrS(ab.listw)
c(res_1)
}
if (run) {
B <- as(similar.listw(ab.listw), "CsparseMatrix")
eigs(B, k=1, which="SR")$values
}
if (run) {
eigs(B, k=1, which="LR")$values
}
}
% Add one or more standard keywords, see file 'KEYWORDS' in the
% R documentation directory.
\keyword{spatial}
|