1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  
     | 
    
      #'
#'     FGmultiInhom.R
#' 
#'     inhomogeneous multitype G and F functions
#'
#'     Original code by Ottmar Cronie and Marie-Colette van Lieshout
#'
#'     Rewritten for spatstat by Adrian Baddeley
#'
#'     GmultiInhom
#'     FmultiInhom
#'
#'      $Revision: 1.8 $ $Date: 2021/01/07 03:16:28 $
GmultiInhom <- function(X, I, J, 
                        lambda=NULL, lambdaI=NULL, lambdaJ=NULL,
                        lambdamin=NULL,
                        ...,
                        r=NULL, 
                        ReferenceMeasureMarkSetI=NULL,
                        ratio=FALSE){
  if(!is.ppp(X) || !is.marked(X))
    stop("X should be a marked point pattern")
  W <- Window(X)
  nX <- npoints(X)
  
  #' handle r argument
  rmax <- rmax.rule("G", W, intensity(X))
  bks <- handle.r.b.args(r, NULL, W, rmaxdefault=rmax)
  r    <- bks$r
  rmax <- bks$max
  nr   <- length(r)
  
  #' Accept any kind of index for I; convert it to a logical index
  I <- ppsubset(X, I)
  if(is.null(I))
    stop("I must be a valid subset index")
  XI <- X[I]
  nI <- sum(I)
  if (nI == 0) 
    stop("No points satisfy condition I")
  
  if(!is.null(ReferenceMeasureMarkSetI)) {
    check.1.real(ReferenceMeasureMarkSetI)
    stopifnot(ReferenceMeasureMarkSetI >= 0)
  }
  #' likewise for J
  if(missing(J) || is.null(J)) {
    J <- rep(TRUE, nX)
  } else {
    J <- ppsubset(X, J)
  }
  XJ <- X[J]
  nJ <- sum(J)
  if (nJ == 0) 
    stop("No points satisfy condition J")
  #' supply either lambda, or lambdaI and lambdaJ
  lam.given <- !is.null(lambda)
  lamIJ.given <- !is.null(lambdaI) || !is.null(lambdaJ)
  if(lam.given == lamIJ.given || is.null(lambdaI) != is.null(lambdaJ))
    stop(paste("Supply either a vector lambda of length equal to npoints(X),",
               "or two vectors lambdaI, lambdaJ of lengths",
               "equal to npoints(X[I]) and npoints(X[J]) respectively"),
         call.=FALSE)
  
  if(lamIJ.given) {
    #' lambdaI and lambdaJ given
    check.nvector(lambdaI, nI, things="points of X[I]", vname="lambdaI")
    stopifnot(all(lambdaI > 0))
    check.nvector(lambdaJ, nJ, things="points of X[J]", vname="lambdaJ")
    stopifnot(all(lambdaJ > 0))
    if(is.null(lambdamin)){
      stop(paste("Supply lambdamin - a single positive number which is",
                 "smaller than the values in lambdaJ"),
           call.=FALSE)
    }
    check.1.real(lambdamin)
    stopifnot(lambdamin > 0)
    stopifnot(lambdamin <= min(lambdaJ))
  } else {
    #' lambda given
    check.nvector(lambda, nX, things="points of X", vname="lambda")
    stopifnot(all(lambda > 0))
    lambdaI <- lambda[I]
    lambdaJ <- lambda[J]
    if(is.null(lambdamin)){
      stop(paste("Supply lambdamin - a single positive number which is",
                 "smaller than the values in lambda"),
           call.=FALSE)
    }
    check.1.real(lambdamin)
    stopifnot(lambdamin > 0)
    stopifnot(lambdamin <= min(lambda))
  }
  
  #' Calculate 1/lambda(x_i,y_i,m_i))
  #'           for all (x_i,y_i,m_i) with m_i in I
  invlambdaI <- 1/lambdaI
  #' Calculate (1 - lambda_min/lambda(x_i,y_i,m_i))
  #'           for all (x_i,y_i,m_i) with m_i in J
  Coeff <- 1-(lambdamin/lambdaJ)
  ## CoeffMatrix <- matrix(rep(Coeff,times=nI), nrow=nI, byrow=TRUE)
  #' distances
  ## DistanceXItoXJ <- crossdist(XI,XJ)
  #' eroded areas and boundary distances
  areaWr <- eroded.areas(W, r)
  bdistXI <- bdist.points(XI)
  #' for each point x in XI, determine largest r such that x \in W-r
  ibI <- fastFindInterval(bdistXI, r, labels=TRUE)
  #' count of points inside W-r for each r
  ## NumberEroded <- revcumsum(table(ibI))
    
  #' denominator
  #' sum invlambdaI for all points x \in W-r
  DenominatorN <- c(sum(invlambdaI),
                    revcumsum(natozero(tapply(invlambdaI, ibI, sum))))
  if(!is.null(ReferenceMeasureMarkSetI))
    DenominatorA <- areaWr * ReferenceMeasureMarkSetI
  #' local products of weights
  #' sort data points in order of increasing x coordinate
  xxI <- XI$x
  yyI <- XI$y
  oXI <- fave.order(xxI)
  xIord <- xxI[oXI]
  yIord <- yyI[oXI]
  #'
  xxJ <- XJ$x
  yyJ <- XJ$y
  vvJ <- Coeff
  oXJ <- fave.order(xxJ)
  xJord <- xxJ[oXJ]
  yJord <- yyJ[oXJ]
  vJord <- vvJ[oXJ]
  # compute local cumulative products
  z <- .C(SC_locxprod,
          ntest = as.integer(nI),
          xtest = as.double(xIord),
          ytest = as.double(yIord),
          ndata = as.integer(nJ),
          xdata = as.double(xJord),
          ydata = as.double(yJord),
          vdata = as.double(vJord),
          nr = as.integer(nr),
          rmax = as.double(rmax),
          ans = as.double(numeric(nI * nr)),
          PACKAGE="spatstat.core")
  ans <- matrix(z$ans, nrow=nr, ncol=nI)
  #' revert to original ordering
  loccumprod <- matrix(,  nrow=nr, ncol=nI)
  loccumprod[, oXI] <- ans
  #' border correction
  outside <- outer(r, bdistXI, ">")
  loccumprod[outside] <- 0
  #' weight by 1/lambdaI
  wlcp <- loccumprod * matrix(invlambdaI, byrow=TRUE, nr, nI)
  #' sum over I for each fixed r
  numer <- .rowSums(wlcp, nr, nI)
  # pack up
  Gdf <- data.frame(r=r, theo = 1 - exp(- lambdamin * pi * r^2))
  desc <- c("distance argument r", "theoretical Poisson %s")
  theo.denom <- rep.int(nI, nr)
  fname <- c("G", "list(inhom,I,J)")
  G <- ratfv(Gdf, NULL, theo.denom,
             "r", quote(G[inhom, I, J](r)),
             "theo", NULL, c(0,rmax),
             c("r", makefvlabel(NULL, NULL, fname, "pois")),
             desc,
             fname=fname,
             yexp=quote(G[list(inhom,I,J)](r)),
             ratio=ratio)
  # add border corrected (Hamilton Principle) estimate
  G <- bind.ratfv(G,
                  data.frame(bord=DenominatorN-numer), DenominatorN,
                  makefvlabel(NULL, "hat", fname, "bord"),
                  "border estimate of %s",
                  "bord",
                  ratio=ratio)
  fvnames(G, ".") <- c("bord", "theo")
  # add modified border corrected (non-Hamilton-Principle) estimate
  if(!is.null(ReferenceMeasureMarkSetI)) {
    G <- bind.ratfv(G,
                    data.frame(bordm=DenominatorA-numer),
                    DenominatorA,
                    makefvlabel(NULL, "hat", fname, "bordm"),
                    "modified border estimate of %s",
                    "bordm",
                    ratio=ratio)
    fvnames(G, ".") <- c("bord", "bordm", "theo")
  }
  # 
  formula(G) <- . ~ r
  unitname(G) <- unitname(X)
  if(ratio)
    G <- conform.ratfv(G)
  return(G)
}
#' marked inhomogeneous F
FmultiInhom <- function(X, J,
                        lambda=NULL,lambdaJ=NULL,
                        lambdamin=NULL,
                        ...,
                        r=NULL) {
  if(!is.ppp(X) || !is.marked(X))
    stop("X should be a marked point pattern")
  nX <- npoints(X)
  
  #' Accept any kind of index for J; convert it to a logical index
  J <- ppsubset(X, J)
  if(is.null(J))
    stop("J must be a valid subset index")
  XJ <- X[J]
  nJ <- sum(J)
  if (nJ == 0) 
    stop("No points satisfy condition J")
  
  if(is.null(lambda) == is.null(lambdaJ))
    stop(paste("Supply either a vector lambda of length equal to npoints(X),",
               "or a vector lambdaJ of length equal to npoints(X[J])"),
         call.=FALSE)
  if(is.null(lambdamin))
    stop("Supply a value for lambdamin", call.=FALSE)
  check.1.real(lambdamin)
  
  if(!is.null(lambda)) {
    check.nvector(lambda, nX, vname="lambda")
    stopifnot(all(lambda > 0))
    stopifnot(lambdamin <= min(lambda[J]))
    lambdaJ <- lambda[J]
  } else {
    check.nvector(lambdaJ, nJ, vname="lambdaJ")
    stopifnot(all(lambdaJ > 0))
    stopifnot(lambdamin <= min(lambdaJ))
  }
  FJ <- Finhom(XJ, lambda=lambdaJ, lmin=lambdamin, r=r)
  FJ <- rebadge.fv(FJ,
                   new.ylab  = quote(F[inhom, J](r)),
                   new.fname = c("F", "list(inhom,J)"),
                   new.yexp   = quote(F[list(inhom,J)](r)))
  return(FJ)
}
 
     |