1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
#
# Kinhom.S Estimation of K function for inhomogeneous patterns
#
# $Revision: 1.100 $ $Date: 2021/10/26 07:12:00 $
#
# Kinhom() compute estimate of K_inhom
#
#
# Reference:
# Non- and semiparametric estimation of interaction
# in inhomogeneous point patterns
# A.Baddeley, J.Moller, R.Waagepetersen
# Statistica Neerlandica 54 (2000) 329--350.
#
# -------- functions ----------------------------------------
# Kinhom() compute estimate of K
# using various edge corrections
#
# Kwtsum() internal routine for border correction
#
# -------- standard arguments ------------------------------
# X point pattern (of class 'ppp')
#
# r distance values at which to compute K
#
# lambda vector of intensity values for points of X
#
# -------- standard output ------------------------------
# A data frame (class "fv") with columns named
#
# r: same as input
#
# trans: K function estimated by translation correction
#
# iso: K function estimated by Ripley isotropic correction
#
# theo: K function for Poisson ( = pi * r ^2 )
#
# border: K function estimated by border method
# (denominator = sum of weights of points)
#
# bord.modif: K function estimated by border method
# (denominator = area of eroded window)
#
# ------------------------------------------------------------------------
"Linhom" <- function(X, ..., correction) {
if(missing(correction)) correction <- NULL
K <- Kinhom(X, ..., correction=correction)
L <- eval.fv(sqrt(pmax.int(K,0)/pi))
# relabel the fv object
L <- rebadge.fv(L, quote(L[inhom](r)), c("L", "inhom"),
names(K), new.labl=attr(K, "labl"))
attr(L, "labl") <- attr(K, "labl")
attr(L, "dangerous") <- attr(K, "dangerous")
#
return(L)
}
"Kinhom"<-
function (X, lambda=NULL, ..., r = NULL, breaks = NULL,
correction=c("border", "bord.modif", "isotropic", "translate"),
renormalise=TRUE,
normpower=1,
update = TRUE,
leaveoneout = TRUE,
nlarge = 1000,
lambda2=NULL,
reciplambda=NULL, reciplambda2=NULL,
diagonal=TRUE,
sigma=NULL, varcov=NULL,
ratio=FALSE)
{
verifyclass(X, "ppp")
nlarge.given <- !missing(nlarge)
rfixed <- !missing(r) || !missing(breaks)
# determine basic parameters
W <- X$window
npts <- npoints(X)
areaW <- area(W)
diamW <- diameter(W)
rmaxdefault <- rmax.rule("K", W, npts/areaW)
breaks <- handle.r.b.args(r, breaks, W, rmaxdefault=rmaxdefault)
r <- breaks$r
rmax <- breaks$max
# match corrections
correction.given <- !missing(correction) && !is.null(correction)
if(is.null(correction))
correction <- c("border", "bord.modif", "isotropic", "translate")
correction <- pickoption("correction", correction,
c(none="none",
border="border",
"bord.modif"="bord.modif",
isotropic="isotropic",
Ripley="isotropic",
trans="translate",
translate="translate",
translation="translate",
good="good",
best="best"),
multi=TRUE)
# best.wanted <- ("best" %in% correction)
## replace 'good' by the optimal choice for this size of dataset
if("good" %in% correction)
correction[correction == "good"] <- good.correction.K(X)
## retain only corrections that are implemented for the window
correction <- implemented.for.K(correction, W$type, correction.given)
###########################################################
# DETERMINE WEIGHTS AND VALIDATE
#
# The matrix 'lambda2' or 'reciplambda2' is sufficient information
# unless we want the border correction.
lambda2.given <- !is.null(lambda2) || !is.null(reciplambda2)
lambda2.suffices <- !any(correction %in% c("bord", "bord.modif"))
## Arguments that are 'dangerous' for envelope, if fixed
dangerous <- c("lambda", "reciplambda", "lambda2", "reciplambda2")
danger <- TRUE
# Use matrix of weights if it was provided and if it is sufficient
if(lambda2.suffices && lambda2.given) {
if(!is.null(reciplambda2)) {
check.nmatrix(reciplambda2, npts)
validate.weights(reciplambda2, recip=TRUE)
} else {
check.nmatrix(lambda2, npts)
validate.weights(lambda2)
reciplambda2 <- 1/lambda2
}
# renormalise
if(renormalise) {
check.1.real(normpower)
stopifnot(normpower %in% 1:2)
rlam2 <- reciplambda2
if(!diagonal) diag(rlam2) <- 0
renorm.factor <- (areaW^2/sum(rlam2))^(normpower/2)
}
} else {
# Vector lambda or reciplambda is required
if(missing(lambda) && is.null(reciplambda)) {
# No intensity data provided
danger <- FALSE
# Estimate density by leave-one-out kernel smoothing
lambda <- density(X, ..., sigma=sigma, varcov=varcov,
at="points", leaveoneout=leaveoneout)
lambda <- as.numeric(lambda)
validate.weights(lambda, how="density estimation")
reciplambda <- 1/lambda
} else if(!is.null(reciplambda)) {
# 1/lambda values provided
if(is.im(reciplambda))
reciplambda <- safelookup(reciplambda, X)
else if(is.function(reciplambda))
reciplambda <- reciplambda(X$x, X$y)
else if(is.numeric(reciplambda) && is.vector(as.numeric(reciplambda)))
check.nvector(reciplambda, npts, vname="reciplambda")
else stop(paste(sQuote("reciplambda"),
"should be a vector, a pixel image, or a function"))
validate.weights(reciplambda, recip=TRUE)
} else {
# lambda values provided
if(is.im(lambda))
lambda <- safelookup(lambda, X)
else if(is.ppm(lambda) || is.kppm(lambda) || is.dppm(lambda)) {
model <- lambda
if(!update) {
## just use intensity of fitted model
lambda <- predict(model, locations=X, type="trend")
} else {
## re-fit model to data X
if(is.ppm(model)) {
model <- update(model, Q=X)
lambda <- fitted(model, dataonly=TRUE, leaveoneout=leaveoneout)
} else {
model <- update(model, X=X)
lambda <- fitted(model, dataonly=TRUE, leaveoneout=leaveoneout)
}
danger <- FALSE
}
} else if(is.function(lambda))
lambda <- lambda(X$x, X$y)
else if(is.numeric(lambda) && is.vector(as.numeric(lambda)))
check.nvector(lambda, npts, vname="lambda")
else stop(paste(sQuote("lambda"),
"should be a vector, a pixel image, or a function"))
validate.weights(lambda)
# evaluate reciprocal
reciplambda <- 1/lambda
}
# renormalise
if(renormalise) {
check.1.real(normpower)
stopifnot(normpower %in% 1:2)
if(!diagonal && normpower == 2) {
renorm.factor <- (areaW^2)/(sum(reciplambda)^2 - sum(reciplambda^2))
} else {
renorm.factor <- (areaW/sum(reciplambda))^normpower
}
}
}
# recommended range of r values
alim <- c(0, min(rmax, rmaxdefault))
###########################################
# Efficient code for border correction and no correction
# Usable only if r values are evenly spaced from 0 to rmax
# Invoked automatically if number of points is large
can.do.fast <- breaks$even && !lambda2.given
large.n <- (npts >= nlarge)
# demand.best <- correction.given && best.wanted
large.n.trigger <- large.n && !correction.given
fastcorrections <- c("border", "bord.modif", "none")
fastdefault <- "border"
correction.fast <- all(correction %in% fastcorrections)
will.do.fast <- can.do.fast && (correction.fast || large.n.trigger)
asked.fast <- (correction.given && correction.fast) ||
(nlarge.given && large.n.trigger)
if(!can.do.fast && asked.fast) {
whynot <-
if(!(breaks$even)) "r values not evenly spaced" else
if(!missing(lambda)) "matrix lambda2 was given" else NULL
warning(paste("cannot use efficient code", whynot, sep="; "))
}
if(will.do.fast) {
## Compute Kinhom using fast algorithm(s)
## determine correction(s)
ok <- correction %in% fastcorrections
correction <- if(any(ok)) correction[ok] else fastdefault
bord <- any(correction %in% c("border", "bord.modif"))
none <- any(correction =="none")
if(!all(ok)) {
## some corrections were overridden; notify user
corx <- c(if(bord) "border correction estimate" else NULL,
if(none) "uncorrected estimate" else NULL)
corx <- paste(corx, collapse=" and ")
message(paste("number of data points exceeds",
nlarge, "- computing", corx , "only"))
}
## restrict r values to recommended range, unless specifically requested
if(!rfixed)
r <- seq(from=0, to=alim[2], length.out=length(r))
## border method
if(bord) {
Kb <- Kborder.engine(X, max(r), length(r), correction,
weights=reciplambda, ratio=ratio)
if(renormalise) {
ynames <- setdiff(fvnames(Kb, "*"), "theo")
Kb <- adjust.ratfv(Kb, ynames, denfactor=1/renorm.factor)
}
Kb <- tweak.ratfv.entry(Kb, "border", new.labl="{hat(%s)[%s]^{bord}} (r)")
Kb <- tweak.ratfv.entry(Kb, "bord.modif", new.labl="{hat(%s)[%s]^{bordm}} (r)")
}
## uncorrected
if(none) {
Kn <- Knone.engine(X, max(r), length(r), weights=reciplambda,
ratio=ratio)
if(renormalise)
Kn <- adjust.ratfv(Kn, "un", denfactor=1/renorm.factor)
Kn <- tweak.ratfv.entry(Kn, "un", new.labl="{hat(%s)[%s]^{un}} (r)")
}
K <-
if(bord && !none) Kb else
if(!bord && none) Kn else
if(!ratio) cbind.fv(Kb, Kn[, c("r", "un")]) else
bind.ratfv(Kb, Kn[, c("r", "un")], ratio=TRUE)
## tweak labels
K <- rebadge.fv(K, quote(K[inhom](r)), c("K", "inhom"))
if(danger)
attr(K, "dangerous") <- dangerous
return(K)
}
###########################################
# Fast code for rectangular window
###########################################
if(can.do.fast && is.rectangle(W) && spatstat.options("use.Krect")) {
K <- Krect.engine(X, rmax, length(r), correction,
weights=reciplambda,
ratio=ratio, fname=c("K", "inhom"))
if(renormalise) {
allfun <- setdiff(fvnames(K, "*"), "theo")
K <- adjust.ratfv(K, allfun, denfactor=1/renorm.factor)
}
K <- rebadge.fv(K, quote(K[inhom](r)), c("K", "inhom"))
attr(K, "alim") <- alim
if(danger)
attr(K, "dangerous") <- dangerous
return(K)
}
###########################################
# Slower code
###########################################
# this will be the output data frame
K <- data.frame(r=r, theo= pi * r^2)
desc <- c("distance argument r", "theoretical Poisson %s")
denom <- if(renormalise) (areaW / renorm.factor) else areaW
K <- ratfv(K, NULL, denom,
argu="r",
ylab=quote(K[inhom](r)),
valu="theo",
fmla=NULL,
alim=alim,
labl=c("r","{%s[%s]^{pois}}(r)"),
desc=desc,
fname=c("K", "inhom"),
ratio=ratio)
# identify all close pairs
rmax <- max(r)
what <- if(any(correction == "translate")) "all" else "ijd"
close <- closepairs(X, rmax, what=what)
dIJ <- close$d
# compute weights for these pairs
I <- close$i
J <- close$j
# wI <- reciplambda[I]
wIJ <-
if(!lambda2.given)
reciplambda[I] * reciplambda[J]
else
reciplambda2[cbind(I,J)]
#
# compute edge corrected estimates
if(any(correction == "border" | correction == "bord.modif")) {
# border method
# Compute distances to boundary
b <- bdist.points(X)
bI <- b[I]
# apply reduced sample algorithm
RS <- Kwtsum(dIJ, bI, wIJ, b, w=reciplambda, breaks)
if(any(correction == "border")) {
Kb <- RS$ratio
if(renormalise)
Kb <- Kb * renorm.factor
K <- bind.ratfv(K,
quotient = data.frame(border=Kb),
denominator = denom,
labl = "{hat(%s)[%s]^{bord}}(r)",
desc = "border-corrected estimate of %s",
preferred = "border",
ratio=ratio)
}
if(any(correction == "bord.modif")) {
Kbm <- RS$numerator/eroded.areas(W, r)
if(renormalise)
Kbm <- Kbm * renorm.factor
K <- bind.ratfv(K,
quotient = data.frame(bord.modif=Kbm),
denominator = denom,
labl = "{hat(%s)[%s]^{bordm}}(r)",
desc = "modified border-corrected estimate of %s",
preferred = "bord.modif",
ratio=ratio)
}
}
if(any(correction == "translate")) {
# translation correction
edgewt <- edge.Trans(dx=close$dx, dy=close$dy, W=W, paired=TRUE)
allweight <- edgewt * wIJ
wh <- whist(dIJ, breaks$val, allweight)
Ktrans <- cumsum(wh)/areaW
if(renormalise)
Ktrans <- Ktrans * renorm.factor
rmax <- diamW/2
Ktrans[r >= rmax] <- NA
K <- bind.ratfv(K,
quotient = data.frame(trans=Ktrans),
denominator = denom,
labl ="{hat(%s)[%s]^{trans}}(r)",
desc = "translation-correction estimate of %s",
preferred = "trans",
ratio=ratio)
}
if(any(correction == "isotropic" | correction == "Ripley")) {
# Ripley isotropic correction
edgewt <- edge.Ripley(X[I], matrix(dIJ, ncol=1))
allweight <- edgewt * wIJ
wh <- whist(dIJ, breaks$val, allweight)
Kiso <- cumsum(wh)/areaW
if(renormalise)
Kiso <- Kiso * renorm.factor
rmax <- diamW/2
Kiso[r >= rmax] <- NA
K <- bind.ratfv(K,
quotient = data.frame(iso=Kiso),
denominator = denom,
labl = "{hat(%s)[%s]^{iso}}(r)",
desc = "Ripley isotropic correction estimate of %s",
preferred = "iso",
ratio=ratio)
}
# default is to display them all
formula(K) <- . ~ r
unitname(K) <- unitname(X)
if(danger)
attr(K, "dangerous") <- dangerous
return(K)
}
Kwtsum <- function(dIJ, bI, wIJ, b, w, breaks, fatal=TRUE) {
#
# "internal" routine to compute border-correction estimates of Kinhom
#
# dIJ: vector containing pairwise distances for selected I,J pairs
# bI: corresponding vector of boundary distances for I
# wIJ: product weight for selected I, J pairs
#
# b: vector of ALL distances to window boundary
# w: weights for ALL points
#
# breaks : breakpts object
#
stopifnot(length(dIJ) == length(bI))
stopifnot(length(bI) == length(wIJ))
stopifnot(length(w) == length(b))
if(!is.finite(sum(w, wIJ))) {
if(fatal)
stop("Weights in K-function were infinite or NA", call.=FALSE)
#' set non-finite weights to zero
if(any(bad <- !is.finite(w))) {
warning(paste(sum(bad), "out of", length(bad),
paren(percentage(bad)),
"of the boundary weights",
"in the K-function were NA or NaN or Inf",
"and were reset to zero"),
call.=FALSE)
w[bad] <- 0
}
if(any(bad <- !is.finite(wIJ))) {
warning(paste(sum(bad), "out of", length(bad),
paren(percentage(bad)),
"of the weights for pairwise distances",
"in the K-function were NA or NaN or Inf",
"and were reset to zero"),
call.=FALSE)
wIJ[bad] <- 0
}
}
bkval <- breaks$val
# determine which distances d_{ij} were observed without censoring
uncen <- (dIJ <= bI)
#
# histogram of noncensored distances
nco <- whist(dIJ[uncen], bkval, wIJ[uncen])
# histogram of censoring times for noncensored distances
ncc <- whist(bI[uncen], bkval, wIJ[uncen])
# histogram of censoring times (yes, this is a different total size)
cen <- whist(b, bkval, w)
# total weight of censoring times beyond rightmost breakpoint
uppercen <- sum(w[b > breaks$max])
# go
RS <- reduced.sample(nco, cen, ncc, show=TRUE, uppercen=uppercen)
# extract results
numerator <- RS$numerator
denominator <- RS$denominator
ratio <- RS$numerator/RS$denominator
# check
if(length(numerator) != breaks$ncells)
stop("internal error: length(numerator) != breaks$ncells")
if(length(denominator) != breaks$ncells)
stop("internal error: length(denom.count) != breaks$ncells")
return(list(numerator=numerator, denominator=denominator, ratio=ratio))
}
validate.weights <- function(x, recip=FALSE, how = NULL,
allowzero = recip,
allowinf = !recip) {
xname <- deparse(substitute(x))
ra <- range(x)
offence <-
if(!allowinf && !all(is.finite(ra))) "infinite" else
if(ra[1] < 0) "negative" else
if(!allowzero && ra[1] == 0) "zero" else NULL
if(!is.null(offence)) {
offenders <- paste(offence, "values of", sQuote(xname))
if(is.null(how))
stop(paste(offenders, "are not allowed"), call.=FALSE)
stop(paste(how, "yielded", offenders), call.=FALSE)
}
return(TRUE)
}
resolve.lambda <- function(X, lambda=NULL, ...,
sigma=NULL, varcov=varcov,
leaveoneout=TRUE, update=TRUE) {
dangerous <- "lambda"
danger <- TRUE
if(is.null(lambda)) {
## No intensity data provided
## Estimate density by leave-one-out kernel smoothing
lambda <- density(X, ..., sigma=sigma, varcov=varcov,
at="points", leaveoneout=leaveoneout)
lambda <- as.numeric(lambda)
danger <- FALSE
} else if(is.im(lambda)) {
lambda <- safelookup(lambda, X)
} else if(is.function(lambda)) {
lambda <- lambda(X$x, X$y)
} else if(is.numeric(lambda) && is.vector(as.numeric(lambda))) {
check.nvector(lambda, npoints(X), vname="lambda")
} else if(is.ppm(lambda) || is.kppm(lambda) || is.dppm(lambda)) {
model <- lambda
if(!update) {
## use intensity of model
lambda <- predict(model, locations=X, type="trend")
} else {
## re-fit model to data X
model <- if(is.ppm(model)) update(model, Q=X) else update(model, X=X)
lambda <- fitted(model, dataonly=TRUE, leaveoneout=leaveoneout)
danger <- FALSE
}
} else stop(paste(sQuote("lambda"),
"should be a vector, a pixel image,",
"a fitted model, or a function"))
return(list(lambda=lambda,
danger=danger,
dangerous=if(danger) dangerous else NULL))
}
|