File: addvar.R

package info (click to toggle)
r-cran-spatstat.core 2.4-4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,440 kB
  • sloc: ansic: 4,402; sh: 13; makefile: 5
file content (369 lines) | stat: -rw-r--r-- 12,750 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#
# addvar.R
#
# added variable plot
#
#   $Revision: 1.13 $  $Date: 2022/01/19 00:49:17 $
#


addvar <- function(model, covariate, ...,
                   subregion=NULL,
                   bw="nrd0", adjust=1,
                   from=NULL, to=NULL, n=512,
                   bw.input = c("points", "quad"),
                   bw.restrict = FALSE,
                   covname, crosscheck=FALSE) {  

  if(missing(covname))
    covname <- sensiblevarname(deparse(substitute(covariate)), "X")
  callstring <- paste(deparse(sys.call()), collapse = "")
  
  if(is.marked(model))
    stop("Sorry, this is not yet implemented for marked models")
      
  if(is.null(adjust)) adjust <- 1
  
  bw.input <- match.arg(bw.input)
  
  # validate model
  stopifnot(is.ppm(model))
  if(is.null(getglmfit(model)))
    model <- update(model, forcefit=TRUE)
  modelcall <- model$callstring
  if(is.null(modelcall))
    modelcall <- model$call
  
  # extract spatial locations
  Q <- quad.ppm(model)
#  datapoints <- Q$data
  quadpoints <- union.quad(Q)
  Z <- is.data(Q)
  wts <- w.quad(Q)
  nQ <- n.quad(Q)
  # fitted intensity
  lam <- fitted(model, type="trend")
  # subset of quadrature points used to fit model
  subQset <- getglmsubset(model)
  if(is.null(subQset)) subQset <- rep.int(TRUE, nQ)
  # restriction to subregion
  insubregion <- if(!is.null(subregion)) {
    inside.owin(quadpoints, w=subregion)
  } else rep.int(TRUE, nQ)

  ################################################################
  # Pearson residuals from point process model

  yr <- residuals(model, type="Pearson")
  yresid <- with(yr, "increment")
  # averaged (then sum with weight 'wts')
  yresid <- yresid/wts

  #################################################################
  # Covariates
  #
  # covariate data frame
  df <- getglmdata(model)
  if(!all(c("x", "y") %in% names(df))) {
    xy <- as.data.frame(quadpoints)
    notxy <- !(colnames(df) %in% c("x", "y"))
    other <- df[, notxy]
    df <- cbind(xy, other)
  }
  #
  avail.covars <- names(df)
  # covariates used in model 
  used.covars   <- model.covariates(model)
  fitted.covars <- model.covariates(model, offset=FALSE)
  #
  #################################################################
  # identify the covariate
  #
  if(!is.character(covariate)) {
    # Covariate is some kind of data, treated as external covariate
    if(covname %in% fitted.covars)
      stop(paste("covariate named", dQuote(covname),
                 "is already used in model"))
    covvalues <- evalCovariate(covariate, quadpoints)
    # validate covvalues
    if(is.null(covvalues))
      stop("Unable to extract covariate values")
    else if(length(covvalues) != npoints(quadpoints))
      stop(paste("Internal error: number of covariate values =",
                 length(covvalues), "!=", npoints(quadpoints),
                 "= number of quadrature points"))
    # tack onto data frame
    covdf <- data.frame(covvalues)
    names(covdf) <- covname
    df <- cbind(df, covdf)
  } else {
    # Argument is name of covariate
    covname <- covariate
    if(length(covname) > 1)
      stop("Must specify only one covariate")
    #
    if(covname %in% fitted.covars)
      stop(paste("covariate", dQuote(covname), "already used in model"))
    #
    if(!(covname %in% avail.covars))
      stop(paste("covariate", dQuote(covname), "not available"))
    # 
    covvalues <- df[, covname]
  }
  
  ################################################################
  # Pearson residuals from weighted linear regression of new covariate on others

  rhs <- formula(model)
  fo <- as.formula(paste(covname, paste(rhs, collapse=" ")))

  fit <- lm(fo, data=df, weights=lam * wts, na.action=na.exclude)
  xresid <- residuals(fit, type="pearson")/sqrt(wts)

  if(crosscheck) {
    message("Cross-checking...")
    X <- model.matrix(fo, data=df)
    V <- diag(lam * wts)
    sqrtV <- diag(sqrt(lam * wts))
    Info <- t(X) %*% V %*% X
    H <- sqrtV %*% X  %*% solve(Info) %*% t(X) %*% sqrtV
    nQ <- length(lam)
    Id <- diag(1, nQ, nQ)
    xresid.pearson <- (Id - H) %*% sqrtV %*% covvalues
    xresid.correct <- xresid.pearson/sqrt(wts)
    abserr <- max(abs(xresid - xresid.correct), na.rm=TRUE)
    relerr <- abserr/diff(range(xresid.correct, finite=TRUE))
    if(is.finite(relerr) && relerr > 0.01) {
      warning("Large relative error in residual computation")
    }
    message("Done.")
  }
  # experiment suggests residuals(fit, "pearson") == xresid.correct
  # and residuals(fit) equivalent to
  # covvalues - X  %*% solve(t(X) %*% V %*% X) %*% t(X) %*% V %*% covvalues

  #################################################################
  # check for NA's etc

  # locations that must have finite values 
  operative <- if(bw.restrict) insubregion & subQset else subQset
 
  nbg <- !is.finite(xresid) |  !is.finite(yresid)
  if(any(offending <- nbg & operative)) {
    warning(paste(sum(offending), "out of", length(offending),
                  "covariate values discarded because",
                  ngettext(sum(offending), "it is", "they are"),
                  "NA or infinite"))
  }
  #################################################################
  # Restrict data to 'operative' points
  #                            with finite values

  ok <- !nbg & operative
  Q           <- Q[ok]
  xresid      <- xresid[ok]
  yresid      <- yresid[ok]
  covvalues   <- covvalues[ok]
  df          <- df[ok, ]
  lam         <- lam[ok]
  wts         <- wts[ok]
  Z           <- Z[ok]
  insubregion <- insubregion[ok]

  ####################################################
  # assemble data for smoothing 
  xx <- xresid
  yy <- yresid
  ww <- wts
  if(makefrom <- is.null(from))
    from <- min(xresid)
  if(maketo <- is.null(to))
    to   <- max(xresid)
  
  ####################################################
  # determine smoothing bandwidth
  #     from 'operative' data

  switch(bw.input,
          quad = {
           # bandwidth selection from covariate values at all quadrature points
           numer <- unnormdensity(xx, weights=yy * ww,
                                  bw=bw, adjust=adjust,
                                  n=n,from=from,to=to, ...)
           sigma <- numer$bw
         },
         points= {
           # bandwidth selection from covariate values at data points
           fake <- unnormdensity(xx[Z], weights=1/lam[Z],
                                 bw=bw, adjust=adjust,
                                 n=n,from=from,to=to, ...)
           sigma <- fake$bw
           numer <- unnormdensity(xx, weights=yy * ww,
                                  bw=sigma, adjust=1,
                                  n=n,from=from,to=to, ...)
         })

 ####################################################
  # Restrict data and recompute numerator if required

  if(!is.null(subregion) && !bw.restrict) {
    # Bandwidth was computed on all data
    # Restrict to subregion and recompute numerator
    xx   <- xx[insubregion]
    yy   <- yy[insubregion]
    ww   <- ww[insubregion]
    lam  <- lam[insubregion]
    Z    <- Z[insubregion]
    if(makefrom) from <- min(xx)
    if(maketo)     to <- max(xx)
    numer <- unnormdensity(xx, weights=yy * ww,
                           bw=sigma, adjust=1,
                           n=n,from=from,to=to, ...)
  }

 ####################################################
  # Compute denominator
  denom <- unnormdensity(xx,weights=ww,
                           bw=sigma, adjust=1,
                           n=n,from=from,to=to, ...)

  ####################################################
  # Determine recommended plot range

  xr <- range(xresid[Z], finite=TRUE)
  alim <- xr + 0.1 * diff(xr) * c(-1,1)
  alim <- intersect.ranges(alim, c(from, to))
  
  ####################################################
  # Compute terms 

  interpolate <- function(x,y) {
    if(inherits(x, "density") && missing(y))
      approxfun(x$x, x$y, rule=2)
    else 
      approxfun(x, y, rule=2)
  }
  numfun <- interpolate(numer)
  denfun <- interpolate(denom)
  xxx <- numer$x
  ratio <- function(y, x) { ifelseXB(x != 0, y/x, NA) }
  yyy <- ratio(numfun(xxx), denfun(xxx))
  # Null variance estimation
  # smooth with weight 1 and smaller bandwidth
  tau <- sigma/sqrt(2)
  varnumer <- unnormdensity(xx,weights=ww,
                            bw=tau,adjust=1,
                            n=n,from=from,to=to, ...)
  varnumfun <- interpolate(varnumer)
  vvv <- ratio(varnumfun(xxx), 2 * sigma * sqrt(pi) * denfun(xxx)^2)
  safesqrt <- function(x) {
    ok <- is.finite(x) & (x >= 0)
    y <- rep.int(NA_real_, length(x))
    y[ok] <- sqrt(x[ok])
    return(y)
  }
  twosd <- 2 * safesqrt(vvv)
  # pack into fv object
  rslt <- data.frame(rcov=xxx, rpts=yyy, theo=0, var=vvv, hi=twosd, lo=-twosd)
  nuc <- length(used.covars)
  if(nuc == 0) {
    given <- givenlab <- 1
  } else if(nuc == 1) {
    given <- givenlab <- used.covars
  } else {
    given <- commasep(used.covars, ", ")
    givenlab <- paste("list", paren(given))
  }
  given <- paste("|", given)
  xlab <- sprintf("r(paste(%s, '|', %s))", covname, givenlab)
  ylab <- sprintf("r(paste(points, '|', %s))", givenlab)
  yexpr <- parse(text=ylab)[[1L]]
  desc <- c(paste("Pearson residual of covariate", covname, given),
            paste("Smoothed Pearson residual of point process", given),
            "Null expected value of point process residual",
            "Null variance of point process residual",
            "Upper limit of pointwise 5%% significance band",
            "Lower limit of pointwise 5%% significance band")
  rslt <- fv(rslt,
             argu="rcov",
             ylab=yexpr,
             valu="rpts",
             fmla= (. ~ rcov),
             alim=alim,
             labl=c(xlab,
                    "%s",
                    "0",
                    "bold(var) ~ %s",
                    "%s[hi]",
                    "%s[lo]"),
             desc=desc,
             fname=ylab)
  attr(rslt, "dotnames") <- c("rpts", "theo", "hi", "lo")
  # data associated with quadrature points
  reserved <- (substr(colnames(df), 1L, 4L) == ".mpl")
  isxy <- colnames(df) %in% c("x", "y")
  dfpublic <- cbind(df[, !(reserved | isxy)], data.frame(xresid, yresid))
  attr(rslt, "spatial") <- union.quad(Q) %mark% dfpublic
  # auxiliary data
  attr(rslt, "stuff") <- list(covname     = covname,
                              xresid      = xresid,
                              yresid      = yresid,
                              covvalues   = covvalues,
                              wts         = wts,
                              bw          = bw,
                              adjust      = adjust,
                              sigma       = sigma,
                              used.covars = used.covars,
                              modelcall   = modelcall,
                              callstring  = callstring,
                              xlim        = c(from, to),
                              xlab        = xlab,
                              ylab        = ylab,
                              lmcoef      = coef(fit),
                              bw.input    = bw.input,
                              bw.restrict = bw.restrict,
                              restricted  = !is.null(subregion))
  # finish
  class(rslt) <- c("addvar", class(rslt))
  return(rslt)
}

print.addvar <- function(x, ...) {
  cat("Added variable plot diagnostic (class addvar)\n")
  s <- attr(x, "stuff")
  mc <- paste(s$modelcall, collapse="")
  cat(paste("for the covariate", dQuote(s$covname),
            "for the fitted model:",
            if(nchar(mc) <= 30) "" else "\n\t",
            mc, "\n\n"))
  if(identical(s$restricted, TRUE))
    cat("\t--Diagnostic computed for a subregion--\n")
   cat(paste("Call:", s$callstring, "\n"))
  cat(paste("Actual smoothing bandwidth sigma =", signif(s$sigma,5),
                    "\n\n"))
  NextMethod("print")
}

plot.addvar <- function(x, ..., do.points=FALSE) {
  xname <- short.deparse(substitute(x))
  s <- attr(x, "stuff")
#  covname <- s$covname
  xresid <- s$xresid
  yresid <- s$yresid
  # adjust y limits if intending to plot points as well
  ylimcover <- if(do.points) range(yresid, finite=TRUE) else NULL
  #
  do.call(plot.fv, resolve.defaults(list(quote(x)), list(...),
                                      list(main=xname,
                                           shade=c("hi", "lo"),
                                           legend=FALSE,
                                           ylim.covers=ylimcover)))
  # plot points
  if(do.points)
    do.call(points,
            resolve.defaults(list(x=xresid, y=yresid),
                             list(...),
                             list(pch=3, cex=0.5)))
  return(invisible(x))
}