1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
##
## auc.R
##
## Calculate ROC curve or area under it
##
## $Revision: 1.11 $ $Date: 2022/02/12 09:13:11 $
roc <- function(X, ...) { UseMethod("roc") }
roc.ppp <- function(X, covariate, ..., high=TRUE) {
nullmodel <- ppm(X)
result <- rocData(covariate, nullmodel, ..., high=high)
return(result)
}
rocData <- function(covariate, nullmodel, ..., high=TRUE) {
d <- spatialCDFframe(nullmodel, covariate, ...)
U <- d$values$U
ec <- if(high) ecdf(1-U) else ecdf(U)
p <- seq(0,1,length=1024)
df <- data.frame(p=p, fobs=ec(p), fnull=p)
result <- fv(df,
argu="p",
ylab=quote(roc(p)),
valu="fobs",
fmla= . ~ p,
desc=c("fraction of area",
"observed fraction of points",
"expected fraction if no effect"),
fname="roc")
fvnames(result, ".") <- c("fobs", "fnull")
return(result)
}
roc.ppm <- function(X, ...) {
stopifnot(is.ppm(X))
model <- X
lambda <- predict(model, ...)
Y <- data.ppm(model)
nullmodel <- ppm(Y)
result <- rocModel(lambda, nullmodel, ...)
return(result)
}
roc.kppm <- function(X, ...) {
stopifnot(is.kppm(X))
model <- as.ppm(X)
lambda <- predict(model, ...)
Y <- data.ppm(model)
nullmodel <- ppm(Y)
result <- rocModel(lambda, nullmodel, ...)
return(result)
}
roc.slrm <- function(X, ...) {
stopifnot(is.slrm(X))
model <- X
lambda <- predict(model, ..., type="probabilities")
Y <- response(model)
nullmodel <- slrm(Y ~ 1)
dont.complain.about(Y)
result <- rocModel(lambda, nullmodel, ..., lambdatype="probabilities")
return(result)
}
rocModel <- function(lambda, nullmodel, ..., high) {
if(!missing(high))
warning("Argument 'high' is ignored when computing ROC for a fitted model")
d<- spatialCDFframe(nullmodel, lambda, ...)
U <- d$values$U
ec <- ecdf(1-U)
p <- seq(0,1,length=1024)
fobs <- ec(p)
FZ <- d$values$FZ
lambdavalues <- if(is.im(lambda)) lambda[] else unlist(lapply(lambda, "["))
F1Z <- ewcdf(lambdavalues, lambdavalues/sum(lambdavalues))
pZ <- get("y", environment(FZ))
qZ <- get("x", environment(FZ))
FZinverse <- approxfun(pZ, qZ, rule=2)
ftheo <- 1 - F1Z(FZinverse(1-p))
df <- data.frame(p=p, fobs=fobs, ftheo=ftheo, fnull=p)
result <- fv(df,
argu="p",
ylab=quote(roc(p)),
valu="fobs",
fmla = . ~ p,
desc=c("fraction of area",
"observed fraction of points",
"expected fraction of points",
"expected fraction if no effect"),
fname="roc")
fvnames(result, ".") <- c("fobs", "ftheo", "fnull")
return(result)
}
# ......................................................
auc <- function(X, ...) { UseMethod("auc") }
auc.ppp <- function(X, covariate, ..., high=TRUE) {
d <- spatialCDFframe(ppm(X), covariate, ...)
U <- d$values$U
EU <- mean(U)
result <- if(high) EU else (1 - EU)
return(result)
}
auc.kppm <- function(X, ...) { auc(as.ppm(X), ...) }
auc.ppm <- function(X, ...) {
model <- X
if(is.multitype(model)) {
# cheat
ro <- roc(model, ...)
aobs <- with(ro, mean(fobs))
atheo <- with(ro, mean(ftheo))
} else if(is.stationary(model)) {
aobs <- atheo <- 1/2
} else {
lambda <- intensity(model)
Fl <- ecdf(lambda[])
lambda <- as.im(lambda, Window(model))
X <- data.ppm(model)
lamX <- lambda[X]
aobs <- mean(Fl(lamX))
atheo <- mean(lambda[] * Fl(lambda[]))/mean(lambda)
}
result <- c(aobs, atheo)
names(result) <- c("obs", "theo")
return(result)
}
auc.slrm <- function(X, ...) {
ro <- roc(X, ...)
result <- with(ro, list(obs=mean(fobs), theo=mean(ftheo)))
return(unlist(result))
}
|