1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
#
# cdftest.R
#
# $Revision: 2.26 $ $Date: 2021/04/08 03:45:49 $
#
#
cdf.test <- function(...) {
UseMethod("cdf.test")
}
cdf.test.ppp <-
function(X, covariate, test=c("ks", "cvm", "ad"), ...,
interpolate=TRUE, jitter=TRUE) {
Xname <- short.deparse(substitute(X))
covname <- singlestring(short.deparse(substitute(covariate)))
test <- match.arg(test)
if(is.character(covariate)) covname <- covariate
if(!is.marked(X, dfok=TRUE)) {
# unmarked
model <- ppm(X)
modelname <- "CSR"
} else if(is.multitype(X)) {
# multitype
mf <- summary(X)$marks$frequency
if(all(mf > 0)) {
model <- ppm(X ~marks)
modelname <- "CSRI"
} else {
warning("Ignoring marks, because some mark values have zero frequency")
X <- unmark(X)
model <- ppm(X)
modelname <- "CSR"
}
} else {
# marked - general case
X <- unmark(X)
warning("marks ignored")
model <- ppm(X)
modelname <- "CSR"
}
dont.complain.about(model)
do.call(spatialCDFtest,
resolve.defaults(list(model=quote(model),
covariate=quote(covariate), test=test),
list(interpolate=interpolate, jitter=jitter),
list(...),
list(modelname=modelname,
covname=covname, dataname=Xname)))
}
cdf.test.ppm <-
function(model, covariate, test=c("ks", "cvm", "ad"), ...,
interpolate=TRUE, jitter=TRUE, nsim=99, verbose=TRUE) {
modelname <- short.deparse(substitute(model))
covname <- singlestring(short.deparse(substitute(covariate)))
test <- match.arg(test)
verifyclass(model, "ppm")
if(is.character(covariate)) covname <- covariate
if(is.poisson(model) && is.stationary(model))
modelname <- "CSR"
do.call(spatialCDFtest,
resolve.defaults(list(model=quote(model),
covariate=quote(covariate),
test=test),
list(interpolate=interpolate, jitter=jitter,
nsim=nsim, verbose=verbose),
list(...),
list(modelname=modelname,
covname=covname)))
}
cdf.test.slrm <- function(model, covariate,
test=c("ks", "cvm", "ad"), ...,
modelname=NULL, covname=NULL) {
# get names
if(is.null(modelname))
modelname <- short.deparse(substitute(model))
if(is.null(covname))
covname <- short.deparse(substitute(covariate))
dataname <- model$CallInfo$responsename
test <- match.arg(test)
#
stopifnot(is.slrm(model))
stopifnot(is.im(covariate))
# extract data
prob <- fitted(model)
covim <- as.im(covariate, W=as.owin(prob))
probvalu <- as.matrix(prob)
covvalu <- as.matrix(covim)
ok <- !is.na(probvalu) & !is.na(covvalu)
probvalu <- as.vector(probvalu[ok])
covvalu <- as.vector(covvalu[ok])
# compile weighted cdf's
FZ <- ewcdf(covvalu, probvalu/sum(probvalu))
X <- model$Data$response
ZX <- safelookup(covim, X)
# Ensure support of cdf includes the range of the data
xxx <- knots(FZ)
yyy <- FZ(xxx)
if(min(xxx) > min(ZX)) {
xxx <- c(min(ZX), xxx)
yyy <- c(0, yyy)
}
if(max(xxx) < max(ZX)) {
xxx <- c(xxx, max(ZX))
yyy <- c(yyy, 1)
}
if(length(xxx) > 1) {
#' non-degenerate cdf
## replace by piecewise linear approximation
FZ <- approxfun(xxx, yyy, rule=2)
}
# now apply cdf
U <- FZ(ZX)
# Test uniformity of transformed values
result <- switch(test,
ks = ks.test(U, "punif", ...),
cvm = cvm.test(U, "punif", ...),
ad = ad.test(U, "punif", ...))
testname <- switch(test,
ks="Kolmogorov-Smirnov",
cvm="Cramer-Von Mises",
ad="Anderson-Darling")
# modify the 'htest' entries
result$method <- paste("Spatial", testname, "test of",
"inhomogeneous Poisson process",
"in two dimensions")
result$data.name <-
paste("covariate", sQuote(paste(covname, collapse="")),
"evaluated at points of", sQuote(dataname),
"\n and transformed to uniform distribution under",
sQuote(modelname))
# additional class 'cdftest'
class(result) <- c("cdftest", class(result))
attr(result, "prep") <-
list(Zvalues=covvalu, ZX=ZX, FZ=FZ, FZX=ecdf(ZX), U=U)
attr(result, "info") <- list(modelname=modelname, covname=covname,
dataname=dataname, csr=FALSE)
return(result)
}
#............. helper functions ........................#
spatialCDFtest <- function(model, covariate, test=c("ks", "cvm", "ad"),
...,
dimyx=NULL, eps=NULL,
interpolate=TRUE, jitter=TRUE, nsim=99, verbose=TRUE,
modelname=NULL, covname=NULL, dataname=NULL) {
## conduct test based on comparison of CDF's of covariate values
test <- match.arg(test)
## compute the essential data
fra <- spatialCDFframe(model, covariate,
dimyx=dimyx, eps=eps,
interpolate=interpolate, jitter=jitter,
modelname=modelname,
covname=covname, dataname=dataname)
## calculate the test statistic
result <- spatialCDFtestCalc(fra, test=test, ...)
if(is.poisson(model))
return(result)
## Gibbs model: perform Monte Carlo test
result$poisson.p.value <- pobs <- result$p.value
result$poisson.statistic <- tobs <- result$statistic
Xsim <- simulate(model, nsim=nsim, progress=verbose)
sim.pvals <- sim.stats <- numeric(nsim)
if(verbose) {
cat("Processing.. ")
state <- list()
}
for(i in seq_len(nsim)) {
model.i <- update(model, Xsim[[i]])
fra.i <- spatialCDFframe(model.i, covariate,
dimyx=dimyx, eps=eps,
interpolate=interpolate, jitter=jitter,
modelname=modelname,
covname=covname, dataname=dataname)
res.i <- spatialCDFtestCalc(fra.i, test=test, ..., details=FALSE)
sim.pvals[i] <- res.i$p.value
sim.stats[i] <- res.i$statistic
if(verbose) state <- progressreport(i, nsim, state=state)
}
if(verbose) cat("Done.\n")
result$sim.pvals <- sim.pvals
result$sim.stats <- sim.stats
## Monte Carlo p-value
## For tied p-values, first compare values of test statistics
## (because p = 0 may occur due to rounding)
## otherwise resolve ties by randomisation
nless <- sum(sim.pvals < pobs)
nplus <- sum(sim.pvals == pobs & sim.stats > tobs)
nties <- sum(sim.pvals == pobs & sim.stats == tobs)
result$p.value <- (nless + nplus + sample(0:nties, 1L))/(nsim+1L)
## modify the 'htest' entries
testname <- switch(test,
ks="Kolmogorov-Smirnov",
cvm="Cramer-Von Mises",
ad="Anderson-Darling")
result$method <-
paste("Monte Carlo spatial", testname, "test",
"of Gibbs process in", fra$info$spacename)
return(result)
}
spatialCDFtestCalc <- function(fra, test=c("ks", "cvm", "ad"), ...,
details=TRUE) {
test <- match.arg(test)
values <- fra$values
info <- fra$info
## Test uniformity of transformed values
U <- values$U
result <- switch(test,
ks = ks.test(U, "punif", ...),
cvm = cvm.test(U, "punif", ...),
ad = ad.test(U, "punif", ...))
# shortcut for internal use only
if(!details)
return(result)
## add a full explanation, internal data, etc.
## modify the 'htest' entries
csr <- info$csr
ispois <- info$ispois
modelname <-
if(csr) "CSR" else
if(ispois) "inhomogeneous Poisson process" else "Gibbs process"
testname <- switch(test,
ks="Kolmogorov-Smirnov",
cvm="Cramer-Von Mises",
ad="Anderson-Darling")
result$method <-
paste("Spatial", testname, "test of", modelname, "in", info$spacename)
result$data.name <-
paste("covariate", sQuote(singlestring(info$covname)),
"evaluated at points of", sQuote(info$dataname),
"\n and transformed to uniform distribution under",
if(csr) info$modelname else sQuote(info$modelname))
## include internal data
attr(result, "frame") <- fra
## additional class 'cdftest'
class(result) <- c("cdftest", class(result))
return(result)
}
spatialCDFframe <- function(model, covariate, ..., jitter=TRUE) {
# evaluate CDF of covariate values at data points and at pixels
stuff <- evalCovar(model, covariate, ..., jitter=jitter)
# extract
values <- stuff$values
# info <- stuff$info
Zvalues <- values$Zvalues
lambda <- values$lambda
weights <- values$weights
ZX <- values$ZX
# compute empirical cdf of Z values at points of X
FZX <- ecdf(ZX)
# form weighted cdf of Z values in window
wts <- lambda * weights
sumwts <- sum(wts)
FZ <- ewcdf(Zvalues, wts/sumwts)
# Ensure support of cdf includes the range of the data
xxx <- knots(FZ)
yyy <- FZ(xxx)
minZX <- min(ZX, na.rm=TRUE)
minxxx <- min(xxx, na.rm=TRUE)
if(minxxx > minZX) {
xxx <- c(minZX, xxx)
yyy <- c(0, yyy)
}
maxZX <- max(ZX, na.rm=TRUE)
maxxxx <- max(xxx, na.rm=TRUE)
if(maxxxx < maxZX) {
xxx <- c(xxx, maxZX)
yyy <- c(yyy, 1)
}
if(length(xxx) > 1) {
#' non-degenerate cdf
## replace by piecewise linear approximation
FZ <- approxfun(xxx, yyy, rule=2)
}
# now apply cdf
U <- FZ(ZX)
if(jitter) {
## Z values have already been jittered, but this does not guarantee
## that U values are distinct
nU <- length(U)
U <- U + runif(nU, -1, 1)/max(100, 2*nU)
U <- pmax(0, pmin(1, U))
}
# pack up
stuff$values$FZ <- FZ
stuff$values$FZX <- FZX
stuff$values$U <- U
stuff$values$EN <- sumwts ## integral of intensity = expected number of pts
class(stuff) <- "spatialCDFframe"
return(stuff)
}
plot.cdftest <- function(x, ..., style=c("cdf", "PP", "QQ"),
lwd=par("lwd"), col=par("col"), lty=par("lty"),
lwd0=lwd, col0=2, lty0=2,
do.legend=TRUE) {
style <- match.arg(style)
fram <- attr(x, "frame")
if(!is.null(fram)) {
values <- fram$values
info <- fram$info
} else {
# old style
values <- attr(x, "prep")
info <- attr(x, "info")
}
# cdf of covariate Z over window
FZ <- values$FZ
# cdf of covariate values at data points
FZX <- values$FZX
# blurb
covname <- info$covname
covdescrip <- switch(covname,
x="x coordinate",
y="y coordinate",
paste("covariate", dQuote(covname)))
# plot it
switch(style,
cdf={
# plot both cdf's superimposed
qZ <- get("x", environment(FZ))
pZ <- get("y", environment(FZ))
main <- c(x$method,
paste("based on distribution of", covdescrip),
paste("p-value=", signif(x$p.value, 4)))
do.call(plot.default,
resolve.defaults(
list(x=qZ, y=pZ, type="l"),
list(...),
list(lwd=lwd0, col=col0, lty=lty0),
list(xlab=info$covname, ylab="probability",
main=main)))
plot(FZX, add=TRUE, do.points=FALSE, lwd=lwd, col=col, lty=lty)
if(do.legend)
legend("topleft", c("observed", "expected"),
lwd=c(lwd,lwd0),
col=c(col2hex(col), col2hex(col0)),
lty=c(lty2char(lty),lty2char(lty0)))
},
PP={
# plot FZX o (FZ)^{-1}
pX <- get("y", environment(FZX))
qX <- get("x", environment(FZX))
p0 <- FZ(qX)
do.call(plot.default,
resolve.defaults(
list(x=p0, y=pX),
list(...),
list(col=col),
list(xlim=c(0,1),
ylim=c(0,1),
xlab="Theoretical probability",
ylab="Observed probability",
main="")))
abline(0,1, lwd=lwd0, col=col0, lty=lty0)
},
QQ={
# plot (FZX)^{-1} o FZ
pZ <- get("y", environment(FZ))
qZ <- get("x", environment(FZ))
FZinverse <- approxfun(pZ, qZ, rule=2)
pX <- get("y", environment(FZX))
qX <- get("x", environment(FZX))
qZX <- FZinverse(pX)
Zrange <- range(qZ, qX, qZX)
xlab <- paste("Theoretical quantile of", covname)
ylab <- paste("Observed quantile of", covname)
do.call(plot.default,
resolve.defaults(
list(x=qZX, y=qX),
list(...),
list(col=col),
list(xlim=Zrange, ylim=Zrange,
xlab=xlab, ylab=ylab,
main="")))
abline(0,1, lwd=lwd0, col=col0, lty=lty0)
})
return(invisible(NULL))
}
|