1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
#
# edgeRipley.R
#
# $Revision: 1.20 $ $Date: 2021/10/25 10:26:05 $
#
# Ripley isotropic edge correction weights
#
# edge.Ripley(X, r, W) compute isotropic correction weights
# for centres X[i], radii r[i,j], window W
#
# To estimate the K-function see the idiom in "Kest.S"
#
#######################################################################
edge.Ripley <- local({
small <- function(x) { abs(x) < .Machine$double.eps }
hang <- function(d, r) {
nr <- nrow(r)
nc <- ncol(r)
answer <- matrix(0, nrow=nr, ncol=nc)
# replicate d[i] over j index
d <- matrix(d, nrow=nr, ncol=nc)
hit <- (d < r)
answer[hit] <- acos(d[hit]/r[hit])
answer
}
edge.Ripley <- function(X, r, W=Window(X),
method=c("C", "interpreted"),
maxweight=100, internal=list()) {
# X is a point pattern, or equivalent
X <- as.ppp(X, W)
W <- X$window
method <- match.arg(method)
debug <- resolve.1.default(list(debug=FALSE), internal)
repair <- resolve.1.default(list(repair=TRUE), internal)
switch(W$type,
rectangle={},
polygonal={
if(method != "C")
stop(paste("Ripley isotropic correction for polygonal windows",
"requires method = ", dQuote("C")))
},
mask={
stop(paste("sorry, Ripley isotropic correction",
"is not implemented for binary masks"))
}
)
n <- npoints(X)
if(is.matrix(r) && nrow(r) != n)
stop("the number of rows of r should match the number of points in X")
if(!is.matrix(r)) {
if(length(r) != n)
stop("length of r is incompatible with the number of points in X")
r <- matrix(r, nrow=n)
}
#
Nr <- nrow(r)
Nc <- ncol(r)
if(Nr * Nc == 0) return(r)
##########
x <- X$x
y <- X$y
switch(method,
interpreted = {
######## interpreted R code for rectangular case #########
# perpendicular distance from point to each edge of rectangle
# L = left, R = right, D = down, U = up
dL <- x - W$xrange[1L]
dR <- W$xrange[2L] - x
dD <- y - W$yrange[1L]
dU <- W$yrange[2L] - y
# detect whether any points are corners of the rectangle
corner <- (small(dL) + small(dR) + small(dD) + small(dU) >= 2)
# angle between (a) perpendicular to edge of rectangle
# and (b) line from point to corner of rectangle
bLU <- atan2(dU, dL)
bLD <- atan2(dD, dL)
bRU <- atan2(dU, dR)
bRD <- atan2(dD, dR)
bUL <- atan2(dL, dU)
bUR <- atan2(dR, dU)
bDL <- atan2(dL, dD)
bDR <- atan2(dR, dD)
# The above are all vectors [i]
# Now we compute matrices [i,j]
# half the angle subtended by the intersection between
# the circle of radius r[i,j] centred on point i
# and each edge of the rectangle (prolonged to an infinite line)
aL <- hang(dL, r)
aR <- hang(dR, r)
aD <- hang(dD, r)
aU <- hang(dU, r)
# apply maxima
# note: a* are matrices; b** are vectors;
# b** are implicitly replicated over j index
cL <- pmin.int(aL, bLU) + pmin.int(aL, bLD)
cR <- pmin.int(aR, bRU) + pmin.int(aR, bRD)
cU <- pmin.int(aU, bUL) + pmin.int(aU, bUR)
cD <- pmin.int(aD, bDL) + pmin.int(aD, bDR)
# total exterior angle
ext <- cL + cR + cU + cD
ext <- matrix(ext, Nr, Nc)
# add pi/2 for corners
if(any(corner))
ext[corner,] <- ext[corner,] + pi/2
# OK, now compute weight
weight <- 1 / (1 - ext/(2 * pi))
},
C = {
############ C code #############################
switch(W$type,
rectangle={
if(!debug) {
z <- .C(SC_ripleybox,
nx=as.integer(n),
x=as.double(x),
y=as.double(y),
rmat=as.double(r),
nr=as.integer(Nc), #sic
xmin=as.double(W$xrange[1L]),
ymin=as.double(W$yrange[1L]),
xmax=as.double(W$xrange[2L]),
ymax=as.double(W$yrange[2L]),
epsilon=as.double(.Machine$double.eps),
out=as.double(numeric(Nr * Nc)),
PACKAGE="spatstat.core")
} else {
z <- .C(SC_ripboxDebug,
nx=as.integer(n),
x=as.double(x),
y=as.double(y),
rmat=as.double(r),
nr=as.integer(Nc), #sic
xmin=as.double(W$xrange[1L]),
ymin=as.double(W$yrange[1L]),
xmax=as.double(W$xrange[2L]),
ymax=as.double(W$yrange[2L]),
epsilon=as.double(.Machine$double.eps),
out=as.double(numeric(Nr * Nc)),
PACKAGE="spatstat.core")
}
weight <- matrix(z$out, nrow=Nr, ncol=Nc)
},
polygonal={
Y <- edges(W)
bd <- bdist.points(X)
if(!debug) {
z <- .C(SC_ripleypoly,
nc=as.integer(n),
xc=as.double(x),
yc=as.double(y),
bd=as.double(bd),
nr=as.integer(Nc),
rmat=as.double(r),
nseg=as.integer(Y$n),
x0=as.double(Y$ends$x0),
y0=as.double(Y$ends$y0),
x1=as.double(Y$ends$x1),
y1=as.double(Y$ends$y1),
out=as.double(numeric(Nr * Nc)),
PACKAGE="spatstat.core")
} else {
z <- .C(SC_rippolDebug,
nc=as.integer(n),
xc=as.double(x),
yc=as.double(y),
bd=as.double(bd),
nr=as.integer(Nc),
rmat=as.double(r),
nseg=as.integer(Y$n),
x0=as.double(Y$ends$x0),
y0=as.double(Y$ends$y0),
x1=as.double(Y$ends$x1),
y1=as.double(Y$ends$y1),
out=as.double(numeric(Nr * Nc)),
PACKAGE="spatstat.core")
}
angles <- matrix(z$out, nrow = Nr, ncol = Nc)
weight <- 2 * pi/angles
}
)
}
)
## eliminate wild values
if(repair)
weight <- matrix(pmax.int(1, pmin.int(maxweight, weight)),
nrow=Nr, ncol=Nc)
return(weight)
}
edge.Ripley
})
rmax.Ripley <- function(W) {
W <- as.owin(W)
if(is.rectangle(W))
return(boundingradius(W))
if(is.polygonal(W) && length(W$bdry) == 1L)
return(boundingradius(W))
## could have multiple connected components
pieces <- tiles(tess(image=connected(W)))
answer <- sapply(pieces, boundingradius)
return(as.numeric(answer))
}
|