1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
#
# effectfun.R
#
# $Revision: 1.25 $ $Date: 2020/01/23 05:36:51 $
#
effectfun <- local({
okclasses <- c("ppm", "kppm", "lppm", "dppm", "rppm", "profilepl")
effectfun <- function(model, covname, ..., se.fit=FALSE, nvalues=256) {
if(!inherits(model, okclasses))
stop(paste("First argument 'model' should be a fitted model of class",
commasep(sQuote(okclasses), " or ")),
call.=FALSE)
orig.model <- model
model <- as.ppm(model)
dotargs <- list(...)
#' determine names of covariates involved
intern.names <-
if(is.marked.ppm(model)) c("x", "y", "marks") else c("x", "y")
needed.names <- variablesinformula(rhs.of.formula(formula(model)))
#' check for clashes/quirks
if("lambda" %in% needed.names) {
if(is.dppm(orig.model) && (
identical.formulae(formula(model), ~offset(log(lambda))-1) ||
identical.formulae(formula(model), ~log(lambda)-1)
))
stop("effectfun is not defined for a DPP model with fixed intensity",
call.=FALSE)
intensityname <- setdiff(c("Lambda", "intensity"), needed.names)[1]
} else intensityname <- "lambda"
## validate the relevant covariate
if(missing(covname) || is.null(covname)) {
mc <- model.covariates(model)
if(length(mc) == 1) covname <- mc else stop("covname must be provided")
}
if(!is.character(covname))
stop("covname should be a character string", call.=FALSE)
if(length(covname) != 1L)
stop("covname should be a single character string", call.=FALSE)
# check that fixed values for all other covariates are provided
given.covs <- names(dotargs)
if(any(uhoh <- !(needed.names %in% c(given.covs, covname)))) {
nuh <- sum(uhoh)
stop(paste(ngettext(nuh,
"A value for the covariate",
"Values for the covariates"),
commasep(dQuote(needed.names[uhoh])),
"must be provided (as",
ngettext(nuh, "an argument", "arguments"),
"to effectfun)"))
}
#' establish type and range of covariate values
check.1.integer(nvalues)
stopifnot(nvalues >= 128)
N0 <- nvalues
if(covname == "x") {
covtype <- "real"
W <- as.owin(data.ppm(model))
Zr <- W$xrange
Zvals <- seq(from=Zr[1L], to=Zr[2L], length.out=N0)
} else if(covname == "y") {
covtype <- "real"
W <- as.owin(data.ppm(model))
Zr <- W$yrange
Zvals <- seq(from=Zr[1L], to=Zr[2L], length.out=N0)
} else if(covname == "marks") {
covtype <- "factor"
Zvals <- levels(marks(data.ppm(model)))
} else {
# covariate is external
if(is.data.frame(covdf <- model$covariates) && (covname %in% names(covdf))) {
Z <- covdf[,covname]
covtype <- typeof(Z)
if(covtype == "double")
covtype <- "real"
switch(covtype,
real={
Zr <- range(Z)
Zvals <- seq(from=Zr[1L], to=Zr[2L], length.out=N0)
},
integer={
Zr <- range(Z)
Zvals <- seq(from=Zr[1L], to=Zr[2L], by=ceiling((diff(Zr)+1)/N0))
},
factor={
Zvals <- levels(Z)
},
logical={
Zvals <- c(FALSE, TRUE)
},
stop(paste("Cannot handle covariate of type", dQuote(covtype)))
)
} else {
Z <- getdataobjects(covname,
environment(formula(model)),
model$covariates)[[1L]]
if(is.null(Z))
stop(paste("Cannot find covariate", sQuote(covname)),
call.=FALSE)
# convert to image
if(!is.im(Z))
Z <- as.im(Z, W=as.owin(model))
covtype <- Z$type
switch(covtype,
real={
Zr <- summary(Z)$range
Zvals <- seq(from=Zr[1L], to=Zr[2L], length.out=N0)
},
factor={
Zvals <- levels(Z)
},
logical={
Zvals <- c(FALSE, TRUE)
},
stop(paste("Cannot handle covariate of type", dQuote(covtype)))
)
}
}
# set up data frames of fake data for predict method
# First set up default, constant value for each covariate
N <- length(Zvals)
fakeloc <- resolve.defaults(dotargs,
list(x=0, y=0))[c("x","y")]
if(is.marked.ppm(model)) {
if("marks" %in% names(dotargs)) {
fakeloc$marks <- dotargs$marks
dotargs <- dotargs[names(dotargs) != "marks"]
} else {
lev <- levels(marks(data.ppm(model)))
fakeloc$marks <- lev[1L]
}
}
fakeloc <- lapply(fakeloc, padout, N=N)
fakecov <- lapply(dotargs, padout, N=N)
# Overwrite value for covariate of interest
if(covname %in% intern.names)
fakeloc[[covname]] <- Zvals
else fakecov[[covname]] <- Zvals
# convert to data frame
fakeloc <- do.call(data.frame, fakeloc)
fakecov <- if(length(fakecov) > 0) do.call(data.frame, fakecov) else NULL
#
# Now predict
pred <- predict(orig.model, locations=fakeloc, covariates=fakecov, se=se.fit)
if(!se.fit) lambda <- pred else {
lambda <- pred$estimate
se <- pred$se
sedf <- data.frame(se =se,
hi = lambda + 2 * se,
lo = lambda - 2 * se)
}
#
dfin <- if(!is.null(fakecov)) cbind(fakeloc, fakecov) else fakeloc
dfin <- dfin[covname]
dflam <- data.frame(lambda=lambda)
names(dflam) <- intensityname
df <- cbind(dfin, dflam)
#
if(covtype != "real") {
result <- df
if(se.fit) result <- cbind(result, sedf)
} else {
bc <- paren(covname)
result <- fv(df, argu=covname,
ylab=substitute(lambda(X),
list(X=as.name(covname),
lambda=as.name(intensityname))),
labl=c(covname,
paste("hat(%s)", bc)),
valu=intensityname, alim=Zr,
desc=c(paste("value of covariate", covname),
"fitted intensity"),
fname=intensityname)
if(se.fit) {
result <- bind.fv(result, sedf,
labl=c(paste("se[%s]", bc),
paste("%s[hi]", bc),
paste("%s[lo]", bc)),
desc=c("standard error of fitted trend",
"upper limit of pointwise 95%% CI for trend",
"lower limit of pointwise 95%% CI for trend"))
fvnames(result, ".") <- c(intensityname, "hi", "lo")
fvnames(result, ".s") <- c("hi", "lo")
formula(result) <- paste(". ~ ", covname)
}
}
return(result)
}
padout <- function(x,N) { rep.int(x[1L],N) }
effectfun
})
|