File: evalcovar.R

package info (click to toggle)
r-cran-spatstat.core 2.4-4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,440 kB
  • sloc: ansic: 4,402; sh: 13; makefile: 5
file content (512 lines) | stat: -rw-r--r-- 19,619 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#'
#' evalcovar.R
#'
#'   evaluate covariate values at data points and at pixels
#'
#' $Revision: 1.44 $ $Date: 2022/05/12 04:08:30 $
#'

evalCovar <- function(model, covariate, ...) {
  UseMethod("evalCovar")
}

evalCovar.ppm <- local({

  evalCovar.ppm <- function(model, covariate, ...,
                            lambdatype=c("cif", "trend", "intensity"),
                            dimyx=NULL, eps=NULL,
                            interpolate=TRUE,
                            jitter=TRUE, jitterfactor=1,
                            modelname=NULL, covname=NULL,
                            dataname=NULL, subset=NULL, clip.predict=TRUE) {
    lambdatype <- match.arg(lambdatype)
    #' evaluate covariate values at data points and at pixels
    ispois <- is.poisson(model)
    csr <- ispois && is.stationary(model)
    #' determine names
    if(is.null(modelname))
      modelname <- if(csr) "CSR" else short.deparse(substitute(model))
    if(is.null(covname)) {
      if(is.character(covariate)) covname <- covariate else
      covname <- singlestring(short.deparse(substitute(covariate)))
    }
    if(is.null(dataname))
      dataname <- model$Qname
    
    info <-  list(modelname=modelname, covname=covname,
                  dataname=dataname, csr=csr, ispois=ispois,
                  spacename="two dimensions")
  
    X <- data.ppm(model)
    W <- as.owin(model)

    #' explicit control of pixel resolution
    if(!is.null(dimyx) || !is.null(eps))
      W <- as.mask(W, dimyx=dimyx, eps=eps)

    Wfull <- Zfull <- NULL
    
    if(!is.null(subset)) {
      #' restrict to subset
      if(!clip.predict) {
        ## use original window for prediction
        Wfull <- W
      }
      X <- X[subset]
      W <- W[subset, drop=FALSE]
    } 
    
    #' evaluate covariate 
    if(is.character(covariate)) {
      #' One of the characters 'x' or 'y'
      #' Turn it into a function.
      ns <- length(covariate)
      if(ns == 0) stop("covariate is empty")
      if(ns > 1) stop("more than one covariate specified")
      covname <- covariate
      covariate <- switch(covariate,
                          x=xcoordfun,
                          y=ycoordfun,
                          stop(paste("Unrecognised covariate",
                                     dQuote(covariate))))
    } 
  
    if(!is.marked(model)) {
      #' ...................  unmarked .......................
      if(is.im(covariate)) {
        type <- "im"
        if(!interpolate) {
          #' look up covariate values 
          ZX <- safelookup(covariate, X)
        } else {
          #' evaluate at data points by interpolation
          ZX <- interp.im(covariate, X$x, X$y)
          #' fix boundary glitches
          if(any(uhoh <- is.na(ZX)))
            ZX[uhoh] <- safelookup(covariate, X[uhoh])
        }
        #' covariate values for pixels inside window (for calculation)
        Z <- covariate[W, drop=FALSE]
        #' covariate values for pixels inside window (for prediction)
        if(!is.null(Wfull)) Zfull <- covariate[Wfull, drop=FALSE] 
        #' corresponding mask
        W <- as.owin(Z)
      } else if(is.function(covariate)) {
        type <- "function"
        #' evaluate exactly at data points
        ZX <- covariate(X$x, X$y)
        if(!all(is.finite(ZX)))
          warning("covariate function returned NA or Inf values")
        #' window
        W <- as.mask(W)
        #' covariate in window
        Z <- as.im(covariate, W=W)
        if(!is.null(Wfull)) Zfull <- as.im(covariate, W=Wfull)
        #' collapse function body to single string
        covname <- singlestring(covname)
      } else if(is.null(covariate)) {
        stop("The covariate is NULL", call.=FALSE)
      } else stop(paste("The covariate should be",
                        "an image, a function(x,y)",
                        "or one of the characters",
                        sQuote("x"), "or", sQuote("y")),
                  call.=FALSE)
      #' values of covariate in window
      Zvalues <- as.vector(Z[W, drop=TRUE])
      #' corresponding fitted [conditional] intensity values
      lambda <- as.vector(predict(model, locations=W,
                                  type=lambdatype)[W, drop=TRUE])
      #' pixel area (constant)
      pixelarea <- with(Z, xstep * ystep)
    } else {
      #' ...................  marked .......................
      if(!is.multitype(model))
        stop("Only implemented for multitype models (factor marks)")
      marx <- marks(X, dfok=FALSE)
      possmarks <- levels(marx)
      npts <- npoints(X)
      #' single image: replicate 
      if(is.im(covariate)) {
        covariate <- rep(list(covariate), times=length(possmarks))
        names(covariate) <- as.character(possmarks)
      }
      #'
      if(is.list(covariate) && all(sapply(covariate, is.im))) {
        #' list of images
        type <- "im"
        if(length(covariate) != length(possmarks))
          stop("Number of images does not match number of possible marks")
        #' evaluate covariate at each data point 
        ZX <- numeric(npts)
        for(k in seq_along(possmarks)) {
          ii <- (marx == possmarks[k])
          covariate.k <- covariate[[k]]
          if(!interpolate) {
            #' look up covariate values 
            values <- safelookup(covariate, X)
          } else {
            #' interpolate
            values <- interp.im(covariate.k, x=X$x[ii], y=X$y[ii])
            #' fix boundary glitches
            if(any(uhoh <- is.na(values)))
              values[uhoh] <- safelookup(covariate.k, X[ii][uhoh])
          }
          ZX[ii] <- values
        }
        #' restrict covariate images to window 
        Z <- solapply(covariate, "[", i=W, drop=FALSE)
        if(!is.null(Wfull)) Zfull <- solapply(covariate, "[", i=Wfull, drop=FALSE)
        #' extract pixel locations and pixel values
        Zframes <- lapply(Z, as.data.frame)
        #' covariate values at each pixel inside window
        Zvalues <- unlist(lapply(Zframes, getElement, name="value"))
        #' pixel locations 
        locn <- lapply(Zframes, getxy)
        #' tack on mark values
        for(k in seq_along(possmarks))
          locn[[k]] <- cbind(locn[[k]], data.frame(marks=possmarks[k]))
        loc <- do.call(rbind, locn)
        #' corresponding fitted [conditional] intensity values
        lambda <- predict(model, locations=loc, type=lambdatype)
        #' pixel areas
        pixelarea <- rep(sapply(Z, pixarea), sapply(Z, npixdefined))
      } else if(is.function(covariate)) {
        type <- "function"
        #' evaluate exactly at data points
        ZX <- functioncaller(x=X$x, y=X$y, m=marx, f=covariate, ...)
        #' functioncaller: function(x,y,m,f,...) { f(x,y,m,...) }
        #' same window
        W <- as.mask(W)
        #' covariate in window
        Z <- list()
        for(k in seq_along(possmarks))
          Z[[k]] <- as.im(functioncaller, m=possmarks[k], f=covariate, W=W, ...)
        Zvalues <- unlist(lapply(Z, pixelvalues))
        #' covariate in original window, for prediction
        if(!is.null(Wfull)) {
          Zfull <- list()
          for(k in seq_along(possmarks))
            Zfull[[k]] <- as.im(functioncaller, m=possmarks[k], f=covariate, W=Wfull, ...)
        }
        #' corresponding fitted [conditional] intensity values
        lambda <- predict(model, locations=W, type=lambdatype)
        lambda <- unlist(lapply(lambda, pixelvalues))
        if(length(lambda) != length(Zvalues))
          stop("Internal error: length(lambda) != length(Zvalues)")
        #' collapse function body to single string
        covname <- singlestring(covname)
        #' pixel areas
        pixelarea <- rep(sapply(Z, pixarea), sapply(Z, npixdefined))
      } else if(is.null(covariate)) {
        stop("The covariate is NULL", call.=FALSE)
      } else stop(paste("For a multitype point process model,",
                        "the covariate should be an image, a list of images,",
                        "a function(x,y,m)", 
                        "or one of the characters",
                        sQuote("x"), "or", sQuote("y")),
                  call.=FALSE)
    }    
    #' ..........................................................

    #' apply jittering to avoid ties
    if(jitter) {
      ZX <- jitter(ZX, factor=jitterfactor)
      Zvalues <- jitter(Zvalues, factor=jitterfactor)
    }

    lambdaname <- if(is.poisson(model)) "intensity" else lambdatype
    lambdaname <- paste("the fitted", lambdaname)
    check.finite(lambda, xname=lambdaname, usergiven=FALSE)
    check.finite(Zvalues, xname="the covariate", usergiven=TRUE)

    #' lambda values at data points
    lambdaX <- predict(model, locations=X, type=lambdatype)

    #' lambda image(s)
    lambdaimage <- predict(model, locations=Wfull %orifnull% W, type=lambdatype)
    
    #' wrap up 
    values <- list(Zimage      = Zfull %orifnull% Z,
                   lambdaimage = lambdaimage,
                   Zvalues     = Zvalues,
                   lambda      = lambda,
                   lambdaX     = lambdaX,
                   weights     = pixelarea,
                   ZX          = ZX,
                   type        = type)
    return(list(values=values, info=info, X=X)) # X is possibly a subset of original
  }

  xcoordfun <- function(x,y,m){x}
  ycoordfun <- function(x,y,m){y}

  pixarea <- function(z) { z$xstep * z$ystep }
  npixdefined <- function(z) { sum(!is.na(z$v)) }
  pixelvalues <- function(z) { as.data.frame(z)[,3L] }
  getxy <- function(z) { z[,c("x","y")] }

  ## Function caller used for marked locations (x,y,m) only.
  functioncaller <- function(x,y,m,f,...) {
    nf <- length(names(formals(f)))
    if(nf < 2) stop("Covariate function must have at least 2 arguments")
    if(nf == 2) return(f(x,y))
    if(nf == 3) return(f(x,y,m))
    argh <- list(...)
    extra <- intersect(names(argh),
                       names(formals(f))[-(1:3)])
    value <- do.call(f, append(list(x,y,m), argh[extra]))
    return(value)
  }
            
  evalCovar.ppm
})

evalCovar.ppp <- local({

  evalCovar.ppp <- function(model, covariate, ...,
                            lambdatype=c("cif", "trend", "intensity"),
                            dimyx=NULL, eps=NULL,
                            interpolate=TRUE,
                            jitter=TRUE, jitterfactor=1,
                            modelname=NULL, covname=NULL,
                            dataname=NULL, subset=NULL, clip.predict=TRUE) {
    lambdatype <- match.arg(lambdatype)
    dont.complain.about(lambdatype)
    if(is.null(modelname)) modelname <- "CSR"
    if(is.null(dataname)) dataname <- "data"
    if(is.null(covname)) {
      if(is.character(covariate)) covname <- covariate else 
      covname <- singlestring(short.deparse(substitute(covariate)))
    }
    
    info <-  list(modelname=modelname, covname=covname,
                  dataname=dataname, csr=TRUE, ispois=TRUE,
                  spacename="two dimensions")
  
    X <- model
    W <- Window(X)

    LambdaBar <- intensity(X) ## numeric value or vector
    
    #' explicit control of pixel resolution
    if(!is.null(dimyx) || !is.null(eps))
      W <- as.mask(W, dimyx=dimyx, eps=eps)

    Wfull <- Zfull <- NULL
    
    if(!is.null(subset)) {
      #' restrict to subset
      if(!clip.predict) {
        #' use original window for prediction
        Wfull <- W
      }
      X <- X[subset]
      W <- W[subset, drop=FALSE]
    }
    
    #' evaluate covariate 
    if(is.character(covariate)) {
      #' One of the characters 'x' or 'y'
      #' Turn it into a function.
      ns <- length(covariate)
      if(ns == 0) stop("covariate is empty")
      if(ns > 1) stop("more than one covariate specified")
      covname <- covariate
      covariate <- switch(covariate,
                          x=xcoordfun,
                          y=ycoordfun,
                          stop(paste("Unrecognised covariate",
                                     dQuote(covariate))))
    } 
  
    if(!is.marked(X)) {
      #' ...................  unmarked .......................
      if(is.im(covariate)) {
        type <- "im"
        if(!interpolate) {
          #' look up covariate values 
          ZX <- safelookup(covariate, X)
        } else {
          #' evaluate at data points by interpolation
          ZX <- interp.im(covariate, X$x, X$y)
          #' fix boundary glitches
          if(any(uhoh <- is.na(ZX)))
            ZX[uhoh] <- safelookup(covariate, X[uhoh])
        }
        #' covariate values for pixels inside window
        Z <- covariate[W, drop=FALSE]
        if(!is.null(Wfull)) Zfull <- covariate[Wfull, drop=FALSE]
        #' corresponding mask
        W <- as.owin(Z)
      } else if(is.function(covariate)) {
        type <- "function"
        #' evaluate exactly at data points
        ZX <- covariate(X$x, X$y)
        if(!all(is.finite(ZX)))
          warning("covariate function returned NA or Inf values")
        #' window
        W <- as.mask(W)
        #' covariate in window
        Z <- as.im(covariate, W=W)
        if(!is.null(Wfull)) Zfull <- as.im(covariate, W=Wfull)
        #' collapse function body to single string
        covname <- singlestring(covname)
      } else if(is.null(covariate)) {
        stop("The covariate is NULL", call.=FALSE)
      } else stop(paste("The covariate should be",
                        "an image, a function(x,y)",
                        "or one of the characters",
                        sQuote("x"), "or", sQuote("y")),
                  call.=FALSE)
      #' values of covariate in window
      Zvalues <- as.vector(Z[W, drop=TRUE])
      #' corresponding intensity values
      lambda <- rep.int(LambdaBar, length(Zvalues))
      #' pixel area (constant)
      pixelarea <- with(Z, xstep * ystep)
      #' lambda values at data points
      lambdaX <- rep.int(LambdaBar, npoints(X))
      #' lambda image
      lambdaimage <- as.im(LambdaBar, Wfull %orifnull% W)
    } else {
      #' ...................  marked .......................
      if(!is.multitype(X))
        stop("Only implemented for multitype patterns (factor marks)")
      marx <- marks(X, dfok=FALSE)
      possmarks <- levels(marx)
      npts <- npoints(X)
      #' single image: replicate 
      if(is.im(covariate)) {
        covariate <- rep(list(covariate), times=length(possmarks))
        names(covariate) <- as.character(possmarks)
      }
      #'
      if(is.list(covariate) && all(sapply(covariate, is.im))) {
        #' list of images
        type <- "im"
        if(length(covariate) != length(possmarks))
          stop("Number of images does not match number of possible marks")
        #' evaluate covariate at each data point 
        ZX <- numeric(npts)
        for(k in seq_along(possmarks)) {
          ii <- (marx == possmarks[k])
          covariate.k <- covariate[[k]]
          if(!interpolate) {
            #' look up covariate values 
            values <- safelookup(covariate, X)
          } else {
            #' interpolate
            values <- interp.im(covariate.k, x=X$x[ii], y=X$y[ii])
            #' fix boundary glitches
            if(any(uhoh <- is.na(values)))
              values[uhoh] <- safelookup(covariate.k, X[ii][uhoh])
          }
          ZX[ii] <- values
        }
        #' restrict covariate images to window 
        Z <- solapply(covariate, "[", i=W, drop=FALSE)
        if(!is.null(Wfull)) Z <- solapply(covariate, "[", i=Wfull, drop=FALSE)
        #' extract pixel locations and pixel values
        Zframes <- lapply(Z, as.data.frame)
        #' covariate values at each pixel inside window
        Zvalues <- unlist(lapply(Zframes, getElement, name="value"))
        #' pixel locations 
        locn <- lapply(Zframes, getxy)
        #' tack on mark values
        for(k in seq_along(possmarks))
          locn[[k]] <- cbind(locn[[k]], data.frame(marks=possmarks[k]))
        loc <- do.call(rbind, locn)
        #' corresponding fitted [conditional] intensity values
        lambda <- LambdaBar[as.integer(loc$marks)]
        #' pixel areas
        pixelarea <- rep(sapply(Z, pixarea), sapply(Z, npixdefined))
      } else if(is.function(covariate)) {
        type <- "function"
        #' evaluate exactly at data points
        ZX <- functioncaller(x=X$x, y=X$y, m=marx, f=covariate, ...)
        #' functioncaller: function(x,y,m,f,...) { f(x,y,m,...) }
        #' same window
        W <- as.mask(W)
        #' covariate in window
        Z <- list()
        for(k in seq_along(possmarks))
          Z[[k]] <- as.im(functioncaller, m=possmarks[k], f=covariate, W=W, ...)
        #' covariate in original window, for prediction
        if(!is.null(Wfull)) {
          Zfull <- list()
          for(k in seq_along(possmarks))
            Zfull[[k]] <- as.im(functioncaller, m=possmarks[k], f=covariate, W=Wfull, ...)
        }
        Zpixvalues <- lapply(Z, pixelvalues)
        Zvalues <- unlist(Zpixvalues)
        #' corresponding fitted [conditional] intensity values
        lambda <- rep(LambdaBar, lengths(Zpixvalues))
        if(length(lambda) != length(Zvalues))
          stop("Internal error: length(lambda) != length(Zvalues)")
        #' collapse function body to single string
        covname <- singlestring(covname)
        #' pixel areas
        pixelarea <- rep(sapply(Z, pixarea), sapply(Z, npixdefined))
      } else if(is.null(covariate)) {
        stop("The covariate is NULL", call.=FALSE)
      } else stop(paste("For a multitype point pattern,", 
                        "the covariate should be an image, a list of images,",
                        "a function(x,y,m)", 
                        "or one of the characters",
                        sQuote("x"), "or", sQuote("y")),
                  call.=FALSE)
      #' lambda values at data points
      lambdaX <- LambdaBar[as.integer(marks(X))]
      #' lambda images
      lambdaimage <- solapply(LambdaBar, as.im, W=Wfull %orifnull% W)
      names(lambdaimage) <- possmarks
    }    
    #' ..........................................................

    #' apply jittering to avoid ties
    if(jitter) {
      ZX <- jitter(ZX, factor=jitterfactor)
      Zvalues <- jitter(Zvalues, factor=jitterfactor)
    }

    lambdaname <- "the average intensity"
    check.finite(lambda, xname=lambdaname, usergiven=FALSE)
    check.finite(Zvalues, xname="the covariate", usergiven=TRUE)

    #' wrap up 
    values <- list(Zimage      = Zfull %orifnull% Z,
                   lambdaimage = lambdaimage,
                   Zvalues     = Zvalues,
                   lambda      = lambda,
                   lambdaX     = lambdaX,
                   weights     = pixelarea,
                   ZX          = ZX,
                   type        = type)
    return(list(values=values, info=info, X=X)) # X is possibly a subset of original
  }

  xcoordfun <- function(x,y,m){x}
  ycoordfun <- function(x,y,m){y}

  pixarea <- function(z) { z$xstep * z$ystep }
  npixdefined <- function(z) { sum(!is.na(z$v)) }
  pixelvalues <- function(z) { as.data.frame(z)[,3L] }
  getxy <- function(z) { z[,c("x","y")] }

  ## Function caller used for marked locations (x,y,m) only.
  functioncaller <- function(x,y,m,f,...) {
    nf <- length(names(formals(f)))
    if(nf < 2) stop("Covariate function must have at least 2 arguments")
    if(nf == 2) return(f(x,y))
    if(nf == 3) return(f(x,y,m))
    argh <- list(...)
    extra <- intersect(names(argh),
                       names(formals(f))[-(1:3)])
    value <- do.call(f, append(list(x,y,m), argh[extra]))
    return(value)
  }
            
  
  evalCovar.ppp
})