1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
#'
#' evalcovarslrm.R
#'
#' method for 'evalCovar' for class 'slrm'
#'
#' $Revision: 1.4 $ $Date: 2021/06/28 05:56:35 $
evalCovar.slrm <- function(model, covariate, ...,
lambdatype=c("probabilities", "intensity"),
jitter=TRUE, jitterfactor=1,
modelname=NULL, covname=NULL,
dataname=NULL, subset=NULL) {
lambdatype <- match.arg(lambdatype)
#' trap misuse
badargs <- intersect(c("eps", "dimyx"), names(list(...)))
nbad <- length(badargs)
if(nbad > 0)
warning(paste(ngettext(nbad, "Argument", "Arguments"),
commasep(sQuote(badargs)),
ngettext(nbad, "is", "are"),
"ignored by rhohat.slrm"),
call.=FALSE)
#' evaluate covariate values at presence pixels and all pixels
#' determine names
if(is.null(modelname))
modelname <- short.deparse(substitute(model))
if(covNotNamed <- is.null(covname)) {
covname <- singlestring(short.deparse(substitute(covariate)))
if(is.character(covariate)) covname <- covariate
}
if(is.null(dataname))
dataname <- model$CallInfo$responsename
csr <- is.stationary(model)
info <- list(modelname=modelname, covname=covname,
dataname=dataname, csr=csr, ispois=TRUE,
spacename="two dimensions")
FIT <- model$Fit$FIT
link <- model$CallInfo$link
## original point pattern
X <- model$Data$response
W <- Window(X)
## extract data from each pixel (or split pixel)
df <- model$Data$df
## restrict to subset if required
if(!is.null(subset)) {
ok <- inside.owin(df$x, df$y, subset)
df <- df[ok, drop=FALSE]
X <- X[subset]
W <- W[subset, drop=FALSE]
}
## presence/absence values
responsename <- model$CallInfo$responsename
presence <- as.logical(df[[responsename]])
## areas of pixels or split pixels
pixelareas <- exp(df$logpixelarea)
## pixel centres as a point pattern
P <- ppp(df$x, df$y, window=W)
#' parse covariate argument
if(is.character(covariate)) {
#' One of the characters 'x' or 'y'
#' Turn it into a function.
ns <- length(covariate)
if(ns == 0) stop("covariate is empty")
if(ns > 1) stop("more than one covariate specified")
covname <- covariate
covNotNamed <- FALSE
covariate <- switch(covname,
x=function(x,y) { x },
y=function(x,y) { y },
stop(paste("Unrecognised covariate",
dQuote(covariate))))
}
if(is.im(covariate)) {
type <- "im"
ZP <- safelookup(covariate, P)
Z <- covariate[W, drop=FALSE]
W <- as.owin(Z)
} else if(is.function(covariate)) {
type <- "function"
ZP <- covariate(P$x, P$y)
if(!all(is.finite(ZP)))
warning("covariate function returned NA or Inf values")
#' window
W <- as.mask(W)
#' covariate in window
Z <- as.im(covariate, W=W)
#' collapse function body to single string
if(covNotNamed) covname <- singlestring(covname)
} else if(is.null(covariate)) {
stop("The covariate is NULL", call.=FALSE)
} else stop(paste("The covariate should be",
"an image, a function(x,y)",
"or one of the characters",
sQuote("x"), "or", sQuote("y")),
call.=FALSE)
#' values of covariate at pixels or split pixels
Zvalues <- ZP
#'values of covariate at 'presence' pixels
ZX <- Zvalues[presence]
#' fitted probability/intensity values at all pixels or split pixels
switch(lambdatype,
probabilities = {
lambda <- predict(FIT, newdata=df, type="response")
},
intensity = {
if(link == "cloglog") {
linkvalues <- predict(FIT, newdata=df, type="link")
lambda <- exp(linkvalues)/pixelareas
} else {
probs <- predict(FIT, newdata=df, type="response")
lambda <- -log(1-probs)/pixelareas
}
})
#' apply jittering to avoid ties
if(jitter) {
ZX <- jitter(ZX, factor=jitterfactor)
Zvalues <- jitter(Zvalues, factor=jitterfactor)
}
lambdaname <- paste("the fitted", lambdatype)
check.finite(lambda, xname=lambdaname, usergiven=FALSE)
check.finite(Zvalues, xname="the covariate", usergiven=TRUE)
#' lambda values at data points
lambdaX <- lambda[presence]
#' lambda image(s)
lambdaimage <- predict(model, window=W, type=lambdatype)
#' wrap up
values <- list(Zimage = Z,
lambdaimage = lambdaimage,
Zvalues = Zvalues,
lambda = lambda,
lambdaX = lambdaX,
weights = pixelareas,
ZX = ZX,
type = type)
return(list(values=values, info=info))
}
|