File: fiksel.R

package info (click to toggle)
r-cran-spatstat.core 2.4-4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,440 kB
  • sloc: ansic: 4,402; sh: 13; makefile: 5
file content (195 lines) | stat: -rw-r--r-- 6,312 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#
#
#    fiksel.R
#
#    $Revision: 1.20 $	$Date: 2022/03/07 02:05:50 $
#
#    Fiksel interaction 
#    
#    ee Stoyan Kendall Mcke 1987 p 161
#
# -------------------------------------------------------------------
#	

Fiksel <- local({

  # ......... auxiliary functions ...........

  fikselterms <- function(U, X, r, kappa, EqualPairs=NULL) {
    answer <- crossfikselterms(U, X, r, kappa)
    nU <- npoints(U)
    # subtract contrinbutions from identical pairs (exp(-0) = 1 for each)
    if(length(EqualPairs) > 0) {
      idcount <- as.integer(table(factor(EqualPairs[,2L], levels=1:nU)))
      answer <- answer - idcount
    }
    return(answer)
  }

  crossfikselterms <- function(X, Y, r, kappa) {
    stopifnot(is.numeric(r))
    # sort in increasing order of x coordinate
    oX <- fave.order(X$x)
    oY <- fave.order(Y$x)
    Xsort <- X[oX]
    Ysort <- Y[oY]
    nX <- npoints(X)
    nY <- npoints(Y)
    # call C routine
    out <- .C(SC_Efiksel,
            nnsource = as.integer(nX),
            xsource  = as.double(Xsort$x),
            ysource  = as.double(Xsort$y),
            nntarget = as.integer(nY),
            xtarget  = as.double(Ysort$x),
            ytarget  = as.double(Ysort$y),
            rrmax    = as.double(r),
            kkappa   = as.double(kappa),
            values   = as.double(double(nX)),
            PACKAGE="spatstat.core")
    answer <- integer(nX)
    answer[oX] <- out$values
    return(answer)
  }


  # ........ template object ..............
  
  BlankFiksel <- 
  list(
         name   = "Fiksel process",
         creator = "Fiksel",
         family  = "pairwise.family",  # evaluated later
         pot    = function(d, par) {
           v <- (d <= par$r) * exp( - d * par$kappa)
           v[ d <= par$hc ] <-  (-Inf)
           v
         },
         par    = list(r = NULL, hc = NULL, kappa=NULL),  # filled in later
         parnames = c("interaction distance",
                      "hard core distance",
                      "rate parameter"),
         hasInf = TRUE, 
         selfstart = function(X, self) {
           # self starter for Fiksel
           nX <- npoints(X)
           if(nX < 2) {
             # not enough points to make any decisions
             return(self)
           }
           md <- minnndist(X)
           if(!is.na(hc <- self$par$hc)) {
             # value fixed by user or previous invocation
             # check it
             if(md < hc)
               warning(paste("Hard core distance is too large;",
                             "some data points will have zero probability"))
             return(self)
           }
           if(md == 0) 
             warning(paste("Pattern contains duplicated points:",
                           "hard core must be zero"))
           # take hc = minimum interpoint distance * n/(n+1)
           hcX <- md * nX/(nX+1)
           Fiksel(r=self$par$r, hc = hcX, kappa=self$par$kappa)
         },
         init   = function(self) {
           r <- self$par$r
           hc <- self$par$hc
           kappa <- self$par$kappa
           check.1.real(r)
           check.1.real(kappa)
           if(!is.na(hc)) {
             check.1.real(hc)
             stopifnot(hc > 0)
             stopifnot(r > hc)
           } else stopifnot(r > 0)
         },
         update = NULL,       # default OK
         print = NULL,         # default OK
         interpret =  function(coeffs, self) {
           a <- as.numeric(coeffs[1L])
           return(list(param=list(a=a),
                       inames="interaction strength a",
                       printable=signif(a)))
         },
         valid = function(coeffs, self) {
           a <- (self$interpret)(coeffs, self)$param$a
           return(is.finite(a))
         },
         project = function(coeffs, self) {
           if((self$valid)(coeffs, self))
             return(NULL)
           hc <- self$par$hc
           if(hc > 0) return(Hardcore(hc)) else return(Poisson()) 
         },
         irange = function(self, coeffs=NA, epsilon=0, ...) {
           r <- self$par$r
           hc <- self$par$hc
           if(anyNA(coeffs))
             return(r)
           a <- coeffs[1L]
           if(abs(a) <= epsilon)
             return(hc)
           else
             return(r)
         },
         hardcore = function(self, coeffs=NA, epsilon=0, ...) {
           return(self$par$hc)
         },
       version=NULL, # evaluated later
       # fast evaluation is available for the border correction only
       can.do.fast=function(X,correction,par) {
         return(all(correction %in% c("border", "none")))
       },
       fasteval=function(X,U,EqualPairs,pairpot,potpars,correction,
                         splitInf=FALSE, ...) {
         ## fast evaluator for Fiksel interaction
         if(!all(correction %in% c("border", "none")))
           return(NULL)
         if(spatstat.options("fasteval") == "test")
           message("Using fast eval for Fiksel")
         r <- potpars$r
         hc <- potpars$hc
         kappa <- potpars$kappa
         hclose <- (strausscounts(U, X, hc, EqualPairs) != 0)
         fikselbit <- fikselterms(U, X, r, kappa, EqualPairs)
         if(!splitInf) {
           answer <- ifelseAX(hclose, -Inf, fikselbit)
           answer <- matrix(answer, ncol=1L)
         } else {
           answer <- fikselbit
           answer <- matrix(answer, ncol=1L)
           attr(answer, "-Inf") <- hclose
         }
         return(answer)
           
       },
       Mayer=function(coeffs, self) {
         # second Mayer cluster integral
         a <- as.numeric(coeffs[1L])
         r     <- self$par$r
         hc    <- self$par$hc
         kappa <- self$par$kappa
         f <- function(x, kappa, a){ 2 * pi * x *
                                       (1 - exp(a * exp(-x * kappa))) }
         hardbit <- integrate(f=f, lower=hc, upper=r,
                              a=a, kappa=kappa)
         mess <- hardbit[["message"]]
         if(!identical(mess, "OK")) {
           warning(mess)
           return(NA)
         }
         return(pi * hc^2 + hardbit$value)
       }
  )
  class(BlankFiksel) <- "interact"

  Fiksel <- function(r, hc=NA, kappa) {
    instantiate.interact(BlankFiksel, list(r = r, hc = hc, kappa=kappa))
  }

  Fiksel <- intermaker(Fiksel, BlankFiksel)
  
  Fiksel
})