1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
#
# interactions.R
#
# Works out which interaction is in force for a given point pattern
#
# $Revision: 1.26 $ $Date: 2021/12/29 00:24:51 $
#
#
impliedpresence <- function(tags, formula, df, extranames=character(0)) {
# Determines, for each row of the data frame df,
# whether the variable called tags[j] is required in the formula
stopifnot(is.data.frame(df))
stopifnot(inherits(formula, "formula"))
stopifnot(is.character(tags))
stopifnot(is.character(extranames))
# allvars <- variablesinformula(formula)
if(any(tags %in% names(df)))
stop(paste(sQuote("tags"),
"conflicts with the name of a column of",
sQuote("df")))
if(any(extranames %in% names(df)))
stop(paste(sQuote("extranames"),
"conflicts with the name of a column of",
sQuote("df")))
# answer is a matrix
nvars <- length(tags)
nrows <- nrow(df)
answer <- matrix(TRUE, nrows, nvars)
# expand data frame with zeroes for each tags and extranames
for(v in unique(c(tags, extranames)))
df[ , v] <- 0
# loop
for(i in seq(nrow(df))) {
# make a fake data frame for the formula
# using the data frame entries from row i
# (includes 0 values for all other variables)
pseudat <- df[i, , drop=FALSE]
# use this to construct a fake model matrix
mof0 <- model.frame(formula, pseudat)
mom0 <- model.matrix(formula, mof0)
for(j in seq(nvars)) {
# Reset the variable called tags[j] to 1
pseudatj <- pseudat
pseudatj[ , tags[j]] <- 1
# Now create the fake model matrix
mofj <- model.frame(formula, pseudatj)
momj <- model.matrix(formula, mofj)
# Compare the two matrices
answer[i,j] <- any(momj != mom0)
}
}
return(answer)
}
active.interactions <- function(object) {
stopifnot(inherits(object, "mppm"))
interaction <- object$Inter$interaction
iformula <- object$iformula
nenv <- new.env()
environment(iformula) <- nenv
random <- object$random
if(!is.null(random))
environment(random) <- nenv
itags <- object$Inter$itags
# The following are currently unused
# ninter <- object$Inter$ninter
# iused <- object$Inter$iused
# trivial <- object$Inter$trivial
# names of variables
dat <- object$data
datanames <- names(dat)
dfnames <- summary(dat)$dfnames
nondfnames <- datanames[!(datanames %in% dfnames)]
nondfnames <- union(nondfnames, c("x", "y"))
# extract data-frame values
dfdata <- as.data.frame(dat[, dfnames, drop=FALSE], warn=FALSE)
# determine which interaction(s) are in force
answer <- impliedpresence(itags, iformula, dfdata, nondfnames)
if(!is.null(random)) {
if("|" %in% all.names(random)) {
## hack since model.matrix doesn't handle "|" as desired
rnd <- gsub("|", "/", pasteFormula(random), fixed=TRUE)
random <- as.formula(rnd, env=environment(random))
}
answer2 <- impliedpresence(itags, random, dfdata, nondfnames)
answer <- answer | answer2
}
colnames(answer) <- names(interaction)
return(answer)
}
impliedcoefficients <- function(object, tag, new.coef=NULL) {
stopifnot(inherits(object, "mppm"))
stopifnot(is.character(tag) && length(tag) == 1)
fitobj <- object$Fit$FIT
Vnamelist <- object$Fit$Vnamelist
has.random <- object$Info$has.random
# Not currently used:
# fitter <- object$Fit$fitter
# interaction <- object$Inter$interaction
# ninteract <- object$Inter$ninteract
# trivial <- object$Inter$trivial
# iused <- object$Inter$iused
itags <- object$Inter$itags
if(!(tag %in% itags))
stop(paste("Argument", dQuote("tag"),
"is not one of the interaction names"))
# (0) Set up
# Identify the columns of the glm data frame
# that are associated with this interpoint interaction
vnames <- Vnamelist[[tag]]
if(!is.character(vnames))
stop("Internal error - wrong format for vnames")
# Check atomic type of each covariate
Moadf <- as.list(object$Fit$moadf)
islog <- sapply(Moadf, is.logical)
isnum <- sapply(Moadf, is.numeric)
isfac <- sapply(Moadf, is.factor)
# Interaction variables must be numeric or logical
if(any(bad <- !(isnum | islog)[vnames]))
stop(paste("Internal error: the",
ngettext(sum(bad), "variable", "variables"),
commasep(sQuote(vnames[bad])),
"should be numeric or logical"),
call.=FALSE)
# The answer is a matrix of coefficients,
# with one row for each point pattern,
# and one column for each vname
answer <- matrix(, nrow=object$npat, ncol=length(vnames))
colnames(answer) <- vnames
# (1) make a data frame of covariates
# Names of all columns in glm data frame
allnames <- names(Moadf)
# Extract the design covariates
df <- as.data.frame(object$data, warn=FALSE)
# Names of all covariates other than design covariates
othernames <- allnames[!(allnames %in% names(df))]
# Add columns in which all other covariates are set to 0, FALSE, etc
for(v in othernames) {
df[, v] <- if(isnum[[v]]) 0 else
if(islog[[v]]) FALSE else
if(isfac[[v]]) {
lev <- levels(Moadf[[v]])
factor(lev[1], levels=lev)
} else sort(unique(Moadf[[v]]))[1]
}
# (2) evaluate linear predictor
Coefs <- new.coef %orifnull% (if(!has.random) coef(fitobj) else fixef(fitobj))
suppressWarnings({
# eta0 <- predict(fitobj, newdata=df, type="link")
eta0 <- GLMpredict(fitobj, data=df, coefs=Coefs,
changecoef=TRUE, type="link")
})
# (3) for each vname in turn,
# set the value of the vname to 1 and predict again
for(j in seq_along(vnames)) {
vnj <- vnames[j]
df[[vnj]] <- 1
suppressWarnings({
# etaj <- predict(fitobj, newdata=df, type="link")
etaj <- GLMpredict(fitobj, data=df, coefs=Coefs,
changecoef=TRUE, type="link")
})
answer[ ,j] <- etaj - eta0
# set the value of this vname back to 0
df[[vnj]] <- 0
}
return(answer)
}
illegal.iformula <- local({
illegal.iformula <- function(ifmla, itags, dfvarnames) {
## THIS IS TOO STRINGENT!
## Check validity of the interaction formula.
## ifmla is the formula.
## itags is the character vector of interaction names.
## Check whether the occurrences of `itags' in `iformula' are valid:
## e.g. no functions applied to `itags[i]'.
## Returns NULL if legal, otherwise a character string
stopifnot(inherits(ifmla, "formula"))
stopifnot(is.character(itags))
## formula must not have a LHS
if(length(ifmla) > 2)
return("iformula must not have a left-hand side")
## variables in formula must be interaction tags or data frame variables
varsinf <- variablesinformula(ifmla)
if(!all(ok <- varsinf %in% c(itags, dfvarnames)))
return(paste(
ngettext(sum(!ok), "variable", "variables"),
paste(dQuote(varsinf[!ok]), collapse=", "),
"not allowed in iformula"))
## if formula uses no interaction tags, it's trivial
if(!any(itags %in% variablesinformula(ifmla)))
return(NULL)
## create terms object
tt <- attributes(terms(ifmla))
## extract all variables appearing in the formula
vars <- as.list(tt$variables)[-1]
## nvars <- length(vars)
varexprs <- lapply(vars, as.expression)
varstrings <- sapply(varexprs, paste)
## Each variable may be a name or an expression
v.is.name <- sapply(vars, is.name)
## a term may be an expression like sin(x), poly(x,y,degree=2)
v.args <- lapply(varexprs, all.vars)
## v.n.args <- sapply(v.args, length)
v.has.itag <- sapply(lapply(v.args, "%in%", x=itags), any)
## interaction tags may only appear as names, not in functions
if(any(nbg <- v.has.itag & !v.is.name))
return(paste("interaction tags may not appear inside a function:",
paste(dQuote(varstrings[nbg]), collapse=", ")))
## Interaction between two itags is not defined
## Inspect the higher-order terms
fax <- tt$factors
if(prod(dim(fax)) == 0)
return(NULL)
## rows are first order terms, columns are terms of order >= 1
fvars <- rownames(fax)
fterms <- colnames(fax)
fv.args <- lapply(fvars, variablesintext)
ft.args <- lapply(fterms, variables.in.term,
factors=fax, varnamelist=fv.args)
ft.itags <- lapply(ft.args, intersect, y=itags)
if(any(lengths(ft.itags) > 1))
return("Interaction between itags is not defined")
return(NULL)
}
variables.in.term <- function(term, factors, varnamelist) {
basis <- (factors[, term] != 0)
unlist(varnamelist[basis])
}
illegal.iformula
})
|