1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
#
# kmrs.S
#
# S code for Kaplan-Meier, Reduced Sample and Hanisch
# estimates of a distribution function
# from _histograms_ of censored data.
#
# kaplan.meier()
# reduced.sample()
# km.rs()
#
# $Revision: 3.28 $ $Date: 2022/05/17 07:11:07 $
#
# The functions in this file produce vectors `km' and `rs'
# where km[k] and rs[k] are estimates of F(breaks[k+1]),
# i.e. an estimate of the c.d.f. at the RIGHT endpoint of the interval.
#
"kaplan.meier" <-
function(obs, nco, breaks, upperobs=0) {
# obs: histogram of all observations : min(T_i,C_i)
# nco: histogram of noncensored observations : T_i such that T_i <= C_i
# breaks: breakpoints (vector or 'breakpts' object, see breaks.S)
# upperobs: number of observations beyond rightmost breakpoint
#
breaks <- as.breakpts(breaks)
n <- length(obs)
if(n != length(nco))
stop("lengths of histograms do not match")
check.hist.lengths(nco, breaks)
#
#
# reverse cumulative histogram of observations
d <- revcumsum(obs) + upperobs
#
# product integrand
s <- ifelseXB(d > 0, 1 - nco/d, 1)
#
km <- 1 - cumprod(s)
# km has length n; km[i] is an estimate of F(r) for r=breaks[i+1]
#
widths <- diff(breaks$val)
lambda <- numeric(n)
pos <- (s > 0)
lambda[pos] <- -log(s[pos])/widths[pos]
# lambda has length n; lambda[i] is an estimate of
# the average of \lambda(r) over the interval (breaks[i],breaks[i+1]).
#
return(list(km=km, lambda=lambda))
}
"reduced.sample" <-
function(nco, cen, ncc, show=FALSE, uppercen=0)
# nco: histogram of noncensored observations: T_i such that T_i <= C_i
# cen: histogram of all censoring times: C_i
# ncc: histogram of censoring times for noncensored obs:
# C_i such that T_i <= C_i
#
# Then nco[k] = #{i: T_i <= C_i, T_i \in I_k}
# cen[k] = #{i: C_i \in I_k}
# ncc[k] = #{i: T_i <= C_i, C_i \in I_k}.
#
# The intervals I_k must span an interval [0,R] beginning at 0.
# If this interval did not include all censoring times,
# then `uppercen' must be the number of censoring times
# that were not counted in 'cen'.
{
n <- length(nco)
if(n != length(cen) || n != length(ncc))
stop("histogram lengths do not match")
#
# denominator: reverse cumulative histogram of censoring times
# denom(r) = #{i : C_i >= r}
# We compute
# cc[k] = #{i: C_i > breaks[k]}
# except that > becomes >= for k=0.
#
cc <- revcumsum(cen) + uppercen
#
#
# numerator
# #{i: T_i <= r <= C_i }
# = #{i: T_i <= r, T_i <= C_i} - #{i: C_i < r, T_i <= C_i}
# We compute
# u[k] = #{i: T_i <= C_i, T_i <= breaks[k+1]}
# - #{i: T_i <= C_i, C_i <= breaks[k]}
# = #{i: T_i <= C_i, C_i > breaks[k], T_i <= breaks[k+1]}
# this ensures that numerator and denominator are
# comparable, u[k] <= cc[k] always.
#
u <- cumsum(nco) - c(0,cumsum(ncc)[1:(n-1)])
rs <- u/cc
#
# Hence rs[k] = u[k]/cc[k] is an estimator of F(r)
# for r = breaks[k+1], i.e. for the right hand end of the interval.
#
if(!show)
return(rs)
else
return(list(rs=rs, numerator=u, denominator=cc))
}
"km.rs" <-
function(o, cc, d, breaks) {
# o: censored lifetimes min(T_i,C_i)
# cc: censoring times C_i
# d: censoring indicators 1(T_i <= C_i)
# breaks: histogram breakpoints (vector or 'breakpts' object)
#
breaks <- as.breakpts(breaks)
bval <- breaks$val
# compile histograms (breakpoints may not span data)
obs <- whist( o, breaks=bval)
nco <- whist( o[d], breaks=bval)
cen <- whist( cc, breaks=bval)
ncc <- whist( cc[d], breaks=bval)
# number of observations exceeding largest breakpoint
upperobs <- attr(obs, "high")
uppercen <- attr(cen, "high")
# go
km <- kaplan.meier(obs, nco, breaks, upperobs=upperobs)
rs <- reduced.sample(nco, cen, ncc, uppercen=uppercen)
#
return(list(rs=rs, km=km$km, hazard=km$lambda,
r=breaks$r, breaks=bval))
}
"km.rs.opt" <-
function(o, cc, d, breaks, KM=TRUE, RS=TRUE) {
# o: censored lifetimes min(T_i,C_i)
# cc: censoring times C_i
# d: censoring indicators 1(T_i <= C_i)
# breaks: histogram breakpoints (vector or 'breakpts' object)
#
breaks <- as.breakpts(breaks)
bval <- breaks$val
out <- list(r=breaks$r, breaks=bval)
if(KM || RS)
nco <- whist( o[d], breaks=bval)
if(KM) {
obs <- whist( o, breaks=bval)
upperobs <- attr(obs, "high")
km <- kaplan.meier(obs, nco, breaks, upperobs=upperobs)
out <- append(list(km=km$km, hazard=km$lambda), out)
}
if(RS) {
cen <- whist( cc, breaks=bval)
ncc <- whist( cc[d], breaks=bval)
uppercen <- attr(cen, "high")
rs <- reduced.sample(nco, cen, ncc, uppercen=uppercen)
out <- append(list(rs=rs), out)
}
return(out)
}
censtimeCDFest <- function(o, cc, d, breaks, ...,
KM=TRUE, RS=TRUE, HAN=TRUE, RAW=TRUE,
han.denom=NULL, tt=NULL, pmax=0.9,
fname="CDF", fexpr=quote(CDF(r))) {
# Histogram-based estimation of cumulative distribution function
# of lifetimes subject to censoring.
# o: censored lifetimes min(T_i,C_i)
# cc: censoring times C_i
# d: censoring indicators 1(T_i <= C_i)
# breaks: histogram breakpoints (vector or 'breakpts' object)
# han.denom: denominator (eroded area) for each value of r
# tt: uncensored lifetimes T_i, if known
breaks <- as.breakpts(breaks)
bval <- breaks$val
rval <- breaks$r
rmax <- breaks$max
# Kaplan-Meier and/or Reduced Sample
out <- km.rs.opt(o, cc, d, breaks, KM=KM, RS=RS)
# convert to data frame
out$breaks <- NULL
df <- as.data.frame(out)
# Raw ecdf of observed lifetimes if available
if(RAW && !is.null(tt)) {
h <- whist(tt[tt <= rmax], breaks=bval)
df <- cbind(df, data.frame(raw=cumsum(h)/length(tt)))
}
# Hanisch
if(HAN) {
if(is.null(han.denom))
stop("Internal error: missing denominator for Hanisch estimator")
if(length(han.denom) != length(rval))
stop(paste("Internal error:",
"length(han.denom) =", length(han.denom),
"!=", length(rval), "= length(rvals)"))
# uncensored distances
x <- o[d]
# calculate Hanisch estimator
h <- whist(x[x <= rmax], breaks=bval)
H <- cumsum(h/han.denom)
df <- cbind(df, data.frame(han=H/max(H[is.finite(H)])))
}
# determine appropriate plotting range
bestest <- if(KM) "km" else if(HAN) "han" else if(RS) "rs" else "raw"
alim <- range(df$r[df[[bestest]] <= pmax])
# convert to fv object
nama <- c("r", "km", "hazard", "han", "rs", "raw")
avail <- c(TRUE, KM, KM, HAN, RS, RAW)
iscdf <- c(FALSE, TRUE, FALSE, TRUE, TRUE, TRUE)
labl <- c("r",
makefvlabel(NULL, "hat", fname, "km"),
"hat(lambda)(r)",
makefvlabel(NULL, "hat", fname, "han"),
makefvlabel(NULL, "hat", fname, "bord"),
makefvlabel(NULL, "hat", fname, "raw")
)[avail]
desc <- c("distance argument r",
"Kaplan-Meier estimate of %s",
"Kaplan-Meier estimate of hazard function lambda(r)",
"Hanisch estimate of %s",
"border corrected estimate of %s",
"uncorrected estimate of %s")[avail]
df <- df[, nama[avail]]
Z <- fv(df, "r", fexpr, bestest, . ~ r, alim, labl, desc,
fname=fname)
fvnames(Z, ".") <- nama[iscdf & avail]
return(Z)
}
# simple interface for students and code development
compileCDF <- function(D, B, r, ..., han.denom=NULL, check=TRUE) {
han <- !is.null(han.denom)
breaks <- breakpts.from.r(r)
if(check) {
stopifnot(length(D) == length(B) && all(D >= 0) && all(B >= 0))
if(han)
stopifnot(length(han.denom) == length(r))
}
D <- as.vector(D)
B <- as.vector(B)
# observed (censored) lifetimes
o <- pmin.int(D, B)
# censoring indicators
d <- (D <= B)
# go
result <- censtimeCDFest(o, B, d, breaks,
HAN=han,
han.denom=han.denom,
RAW=TRUE, tt=D)
result <- rebadge.fv(result, new.fname="compileCDF")
}
|