File: leverage.R

package info (click to toggle)
r-cran-spatstat.core 2.4-4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,440 kB
  • sloc: ansic: 4,402; sh: 13; makefile: 5
file content (1189 lines) | stat: -rw-r--r-- 43,332 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
#
#  leverage.R
#
#  leverage and influence
#
#  $Revision: 1.121 $ $Date: 2020/12/19 05:25:06 $
#

leverage <- function(model, ...) {
  UseMethod("leverage")
}

leverage.ppm <- function(model, ...,
                         drop=FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)
{
  fitname <- short.deparse(substitute(model))
  a <- ppmInfluence(model, what="leverage", drop=drop,
                    iScore=iScore, iHessian=iHessian, iArgs=iArgs,
                    ...,
                    fitname=fitname)
  return(a$leverage)
}

influence.ppm <- function(model, ...,
                          drop=FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)
{
  fitname <- short.deparse(substitute(model))
  a <- ppmInfluence(model, what="influence", drop=drop,
                    iScore=iScore, iHessian=iHessian, iArgs=iArgs,
                    ...,
                    fitname=fitname)
  return(a$influence)
}

dfbetas.ppm <- function(model, ...,
                        drop=FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL) {
  fitname <- short.deparse(substitute(model))
  a <- ppmInfluence(model, what="dfbetas", drop=drop,
                         iScore=iScore, iHessian=iHessian, iArgs=iArgs,
                     ...,
                    fitname=fitname)
  return(a$dfbetas)
}

ppmInfluence <- function(fit,
                         what=c("leverage", "influence", "dfbetas"),
                         ..., 
                         iScore=NULL, iHessian=NULL, iArgs=NULL,
                         drop=FALSE,
                         fitname=NULL) {
  stuff <- ppmInfluenceEngine(fit, what=what,
                          ..., 
                          iScore=iScore, iHessian=iHessian, iArgs=iArgs,
                          drop=drop, fitname=fitname)
  fnam <- c("fitname", "fit.is.poisson")
  result <- list()
  if("lev" %in% names(stuff)) {
    lev <- stuff[c(fnam, "lev")]
    class(lev) <- "leverage.ppm"
    result$leverage <- lev
  }
  if("infl" %in% names(stuff)) {
    infl <- stuff[c(fnam, "infl")]
    class(infl) <- "influence.ppm"
    result$influence <- infl
  }
  if(!is.null(dfb <- stuff$dfbetas)) {
    attr(dfb, "info") <- stuff[fnam]
    result$dfbetas <- dfb
  }
  other <- setdiff(names(stuff), c("lev", "infl", "dfbetas"))
  result[other] <- stuff[other]
  class(result) <- "ppmInfluence"
  return(result)
}

leverage.ppmInfluence <- function(model, ...) { model$leverage }
influence.ppmInfluence <- function(model, ...) { model$influence }
dfbetas.ppmInfluence <- function(model, ...) { model$dfbetas }

## ...............  main workhorse ....................................

ppmInfluenceEngine <- function(fit,
                         what=c("leverage", "influence", "dfbetas",
                           "score", "derivatives", "increments", "all"),
                         ...,
                         iScore=NULL, iHessian=NULL, iArgs=NULL,
                         drop=FALSE,
                         method=c("C", "interpreted"),
                         fine=FALSE,
                         precomputed=list(),
                         sparseOK=TRUE,
                         fitname=NULL,
                         multitypeOK=FALSE,
                         entrywise = TRUE,
                         matrix.action = c("warn", "fatal", "silent"),
                         dimyx=NULL, eps=NULL,
                         geomsmooth = TRUE) {
  if(is.null(fitname)) 
    fitname <- short.deparse(substitute(fit))

  ## type of calculation to be performed
  method <- match.arg(method)
  what <- match.arg(what, several.ok=TRUE)
  if("all" %in% what)
    what <- c("leverage", "influence", "dfbetas",
              "score", "derivatives", "increments")
  matrix.action <- match.arg(matrix.action)

  influencecalc <- any(what %in% c("leverage", "influence", "dfbetas"))
  hesscalc <- influencecalc || any(what == "derivatives")
  sparse <- sparseOK 
  target <- paste(what, collapse=",")
  
  ## ...........  collect information about the model .................
  
  stopifnot(is.ppm(fit))

  #' ensure object contains GLM fit
  if(!hasglmfit(fit)) {
    fit <- update(fit, forcefit=TRUE)
    precomputed <- list()
  }

  #' type of interpoint interaction
  fit.is.poisson <- is.poisson(fit)
  hasInf <- !fit.is.poisson && !identical(fit$interaction$hasInf, FALSE)

  #' estimating function 
  fitmethod <- fit$method
  logi <- (fitmethod == "logi")
  pseudo <- (fitmethod == "mpl")
  if(!logi && !pseudo) {
    warning(paste("Model was fitted with method =", dQuote(fitmethod),
                  "but is treated as having been fitted by maximum",
		  if(fit.is.poisson) "likelihood" else "pseudolikelihood",
		  "for leverage/influence calculation"),
	    call.=FALSE)
    pseudo <- TRUE
  }

  ## Detect presence of irregular parameters
  if(is.null(iArgs))
    iArgs <- fit$covfunargs
  gotScore <- !is.null(iScore)
  gotHess <- !is.null(iHessian)
  needHess <- gotScore && hesscalc  # may be updated later
  if(!gotHess && needHess)
    stop("Must supply iHessian", call.=FALSE)

  #' ...................  evaluate basic terms ....................
  
  ## extract values from model, using precomputed values if given
  theta  <- precomputed$coef   %orifnull% coef(fit)
  lampos <- precomputed$lambda %orifnull% fitted(fit, ignore.hardcore=hasInf,
                                                      check=FALSE)
  mom    <- precomputed$mom    %orifnull% model.matrix(fit, splitInf=hasInf)

  ## 'lampos' is positive part of cif
  ## 'lam' is full model cif including zeroes
  lam <- lampos
  zerocif <- attr(mom, "-Inf") %orifnull% logical(nrow(mom))
  anyzerocif <- any(zerocif)
  if(hasInf && anyzerocif)
    lam[zerocif] <- 0
  
  p <- length(theta)
  Q <- quad.ppm(fit)
  w <- w.quad(Q)
  loc <- union.quad(Q)
  isdata <- is.data(Q)
  mt <- is.multitype(loc)
  if(length(w) != length(lam))
    stop(paste("Internal error: length(w) = ", length(w),
               "!=", length(lam), "= length(lam)"),
         call.=FALSE)

  ## smoothing bandwidth and resolution for smoothed images of densities
  smallsigma <- if(!mt) avenndist(loc) else max(sapply(split(loc), avenndist))
  ## previously used 'maxnndist' instead of 'avenndist'
  if(is.null(dimyx) && is.null(eps)) 
    eps <- sqrt(prod(sidelengths(Frame(loc))))/256

  #' ...............  evaluate Hessian of regular parameters ................

  ## domain of composite likelihood
  ## (e.g. eroded window in border correction)
  inside <- getglmsubset(fit) %orifnull% rep(TRUE, npoints(loc))
  
  ## extract negative Hessian matrix of regular part of log composite likelihood
  ##  hess = negative Hessian H
  ##  fgrad = Fisher-scoring-like gradient G = estimate of E[H]

  if(logi) {
    ## ..............    logistic composite likelihood ......................
    ## Intensity of dummy points
    rho <- fit$Q$param$rho %orifnull% intensity(as.ppp(fit$Q))
    logiprob <- lampos / (lampos + rho)
    vclist <- vcov(fit, what = "internals", fine=fine, matrix.action="silent")
    hess <- vclist$Slog
    fgrad <- vclist$fisher
    invhess <- if(is.null(hess)) NULL else checksolve(hess, "silent")
    invfgrad <- if(is.null(fgrad)) NULL else checksolve(fgrad, "silent")
    if(is.null(invhess) || is.null(invfgrad)) {
      #' use more expensive estimate of variance terms
      vclist <- vcov(fit, what = "internals", fine=TRUE,
                     matrix.action=matrix.action)
      hess <- vclist$Slog
      fgrad <- vclist$fisher
      #' try again - exit if really singular
      invhess <- checksolve(hess, matrix.action, "Hessian", target)
      invfgrad <- checksolve(fgrad, matrix.action, "gradient matrix", target)
    }
#    vc <- invhess %*% (vclist$Sigma1log+vclist$Sigma2log) %*% invhess
  } else {
    ## ..............  likelihood or pseudolikelihood ....................
    invfgrad <- vcov(fit, hessian=TRUE, fine=fine, matrix.action="silent")
    fgrad <- hess <- if(is.null(invfgrad) || anyNA(invfgrad)) NULL else
                     checksolve(invfgrad, "silent")
    if(is.null(fgrad)) {
      invfgrad <- vcov(fit, hessian=TRUE, fine=TRUE,
                       matrix.action=matrix.action)
      fgrad <- hess <- checksolve(invfgrad, matrix.action, "Hessian", target)
    }
  }

  #' ...............  augment Hessian  ...................

  ## evaluate additional (`irregular') components of score, if any
  iscoremat <- ppmDerivatives(fit, "gradient", iScore, loc, covfunargs=iArgs)
  gotScore <- !is.null(iscoremat)
  needHess <- gotScore && hesscalc
  if(!gotScore) {
    REG <- 1:ncol(mom)
  } else {
    ## count regular and irregular parameters
    nreg <- ncol(mom)
    nirr <- ncol(iscoremat)
    ## add extra columns to model matrix
    mom <- cbind(mom, iscoremat)
    REG <- 1:nreg
    IRR <- nreg + 1:nirr
    ## evaluate additional (`irregular') entries of Hessian
    ihessmat <- if(!needHess) NULL else
                ppmDerivatives(fit, "hessian", iHessian, loc, covfunargs=iArgs)
    if(gotHess <- !is.null(ihessmat)) {
      ## recompute negative Hessian of log PL and its mean
      fgrad <- hessextra <- matrix(0, ncol(mom), ncol(mom))
    } else if(needHess && length(iArgs)) {
      nami <- names(iArgs)
      stop(paste("Unable to compute iHess, the",
                 ngettext(length(nami), "component", "components"),
                 "of the Hessian matrix for the irregular",
                 ngettext(length(nami), "parameter", "parameters"),
                 commasep(sQuote(names(iArgs)))),
           call.=FALSE)
    }
    if(pseudo) {
      ## ..............  likelihood or pseudolikelihood ....................
      switch(method,
             interpreted = {
               for(i in seq(loc$n)) {
                 # weight for integrand
                 wti <- lam[i] * w[i]
                 if(all(is.finite(wti))) {
                   # integral of outer product of score 
                   momi <- mom[i, ]
                   v1 <- outer(momi, momi, "*") * wti
                   if(all(is.finite(v1)))
                     fgrad <- fgrad + v1
                   # integral of Hessian
                   # contributions nonzero for irregular parameters
                   if(gotHess) {
                     v2 <- matrix(as.numeric(ihessmat[i,]), nirr, nirr) * wti
                     if(all(is.finite(v2)))
                       hessextra[IRR, IRR] <- hessextra[IRR, IRR] + v2
                   }
                 }
               }
               # subtract sum over data points
               if(gotHess) {
                 for(i in which(isdata)) {
                   v2 <- matrix(as.numeric(ihessmat[i,]), nirr, nirr) 
                   if(all(is.finite(v2)))
                     hessextra[IRR, IRR] <- hessextra[IRR, IRR] - v2
                 }
                 hess <- fgrad + hessextra
                 invhess <- checksolve(hess, matrix.action, "Hessian", target)
               } else {
                 invhess <- hess <- NULL
               }
             },
             C = {
               wlam <- lam * w
               fgrad <- sumouter(mom, wlam)
               if(gotHess) {
                 # integral term
                 isfin <- is.finite(wlam) & matrowall(is.finite(ihessmat))
                 vintegral <-
                   if(all(isfin)) wlam %*% ihessmat else
                               wlam[isfin] %*% ihessmat[isfin,, drop=FALSE]
                 # sum over data points
                 vdata <- .colSums(ihessmat[isdata, , drop=FALSE],
                                   sum(isdata), ncol(ihessmat),
                                   na.rm=TRUE)
                 vcontrib <- vintegral - vdata
                 hessextra[IRR, IRR] <-
                   hessextra[IRR, IRR] + matrix(vcontrib, nirr, nirr)
                 hess <- fgrad + hessextra
                 invhess <- checksolve(hess, matrix.action, "Hessian", target)
               } else {
                 invhess <- hess <- NULL
               }
             })
    } else {
      ## ..............  logistic composite likelihood ....................
      switch(method,
             interpreted = {
	       oweight <- logiprob * (1 - logiprob)
	       hweight <- ifelse(isdata, -(1 - logiprob), logiprob)
               for(i in seq(loc$n)) {
                 ## outer product of score 
                 momi <- mom[i, ]
                 v1 <- outer(momi, momi, "*") * oweight[i]
                 if(all(is.finite(v1)))
                   fgrad <- fgrad + v1
		 ## Hessian term
                 ## contributions nonzero for irregular parameters
                 if(gotHess) {
                   v2 <- hweight[i] *
		         matrix(as.numeric(ihessmat[i,]), nirr, nirr)
                   if(all(is.finite(v2)))
                     hessextra[IRR, IRR] <- hessextra[IRR, IRR] + v2
                 }
               }
	       if(gotHess) {
                 hess <- fgrad + hessextra
                 invhess <- checksolve(hess, matrix.action, "Hessian", target)
               } else {
                 invhess <- hess <- NULL
	       }
             },
             C = {
	       oweight <- logiprob * (1 - logiprob)
	       hweight <- ifelse(isdata, -(1 - logiprob), logiprob)
               fgrad <- sumouter(mom, oweight)
               if(gotHess) {
                 # Hessian term
                 isfin <- is.finite(hweight) & matrowall(is.finite(ihessmat))
                 vcontrib <-
                   if(all(isfin)) hweight %*% ihessmat else
                               hweight[isfin] %*% ihessmat[isfin,, drop=FALSE]
                 hessextra[IRR, IRR] <-
                   hessextra[IRR, IRR] + matrix(vcontrib, nirr, nirr)
                 hess <- fgrad + hessextra
                 invhess <- checksolve(hess, matrix.action, "Hessian", target)
               } else {
                 invhess <- hess <- NULL
               }
             })
    }
    invfgrad <- checksolve(fgrad, matrix.action, "gradient matrix", target)
  }
  
  if(!needHess) {
    if(pseudo){
    hess <- fgrad
    invhess <- invfgrad
    }
  }
  #
  ok <- NULL
  if(drop) {
    ok <- complete.cases(mom)
    if(all(ok)) {
      ok <- NULL
    } else {
      if((nbad <- sum(isdata[!ok])) > 0)
        warning(paste("NA value of canonical statistic at",
                      nbad, ngettext(nbad, "data point", "data points")),
                call.=FALSE)
      Q <- Q[ok]
      mom <- mom[ok, , drop=FALSE]
      loc <- loc[ok]
      lam <- lam[ok]
      w   <- w[ok]
      isdata <- isdata[ok]
      inside <- inside[ok]
    }
  } 

  # ........  start assembling result .....................
  result <- list(fitname=fitname, fit.is.poisson=fit.is.poisson)

  if(any(c("score", "derivatives") %in% what)) {
    ## calculate the composite score
    rawmean <- if(logi) logiprob else (lam * w)
    rawresid <- isdata - rawmean
    score <- matrix(rawresid, nrow=1) %*% mom

    if("score" %in% what)
      result$score <- score
    if("derivatives" %in% what) 
      result$deriv <- list(mom=mom, score=score,
                           fgrad=fgrad, invfgrad=invfgrad,
                           hess=hess, invhess=invhess)
    if(all(what %in% c("score", "derivatives")))
      return(result)
  }


  ## :::::::::::::::  compute second order terms :::::::::::::


  ##  >>>  set model matrix to zero outside the domain <<<
  mom[!inside, ] <- 0
  
  ## compute effect of adding/deleting each quadrature point
  if(fit.is.poisson) {
    ##  ........ Poisson case ..................................
    eff <- mom
    ddS <- ddSintegrand <- NULL
  } else {
    ## ........  Gibbs case ....................................
    ## initialise
    eff <- mom
    ## second order interaction terms
    ##    columns index the point being added/deleted
    ##    rows index the points affected
    ## goal is to compute these effect matrices:
    eff.data <- eff.back  <- matrix(0, nrow(eff), ncol(eff),
                                    dimnames=dimnames(eff))
    ## 
    U <- union.quad(Q)
    nU <- npoints(U)
    ## decide whether to split into blocks
    nX <- Q$data$n
    nD <- Q$dummy$n
    bls <- quadBlockSizes(nX, nD, p, announce=TRUE)
    nblocks    <- bls$nblocks
    nperblock  <- bls$nperblock
    ##
    if(nblocks > 1 && ("increments" %in% what)) {
      warning("Oversize quadrature scheme: cannot return array of increments",
              call.=FALSE)
      what <- setdiff(what, "increments")
    }
    R <- reach(fit)
    ## indices into original quadrature scheme
    whichok <- if(!is.null(ok)) which(ok) else seq_len(nX+nD) 
    whichokdata <- whichok[isdata]
    whichokdummy <- whichok[!isdata]
    
    ## {{{{{{{{{{{{{   L O O P   }}}}}}}}}}}}}
    ## loop 
    for(iblock in 1:nblocks) {
      first <- min(nD, (iblock - 1) * nperblock + 1)
      last  <- min(nD, iblock * nperblock)
      # corresponding subset of original quadrature scheme
      if(!is.null(ok) || nblocks > 1) {
        ## subset for which we will compute the effect
        current <- c(whichokdata, whichokdummy[first:last])
        ## find neighbours, needed for calculation
        other <- setdiff(seq_len(nU), current)
        crx <- crosspairs(U[current], U[other], R, what="indices")
        nabers <- other[unique(crx$j)]
        ## subset actually requested
        requested <- c(current, nabers)
        ## corresponding stuff ('B' for block)
        isdataB <- isdata[requested]
        changesignB <- ifelse(isdataB, -1, 1)
        zerocifB <- zerocif[requested]
        anyzerocifB <- any(zerocifB)
        momB <- mom[requested, , drop=FALSE]
        lamB <- lam[requested]
        #' unused:
        #'     insideB <- inside[requested]
        #'     lamposB <- lampos[requested]
        if(logi) logiprobB <- logiprob[requested]
        wB <- w[requested]
        currentB <- seq_along(current)
      } else {
        requested <- NULL
        isdataB <- isdata
        changesignB <- ifelse(isdataB, -1, 1)
        zerocifB <- zerocif
        anyzerocifB <- anyzerocif
        momB <- mom
        lamB <- lam
        #'  unused:
        #'     insideB <- inside
	#'     lamposB <- lampos
        if(logi) logiprobB <- logiprob
        wB <- w
      }
      ## compute second order terms 
      ## ddS[i,j, ] = Delta_i Delta_j S(x)
      ddS <- deltasuffstat(fit, restrict = "first", dataonly=FALSE,
                           quadsub=requested, sparseOK=sparse,
			   splitInf=hasInf,
                           force=TRUE, warn.forced=TRUE)
      ## 
      if(is.null(ddS)) {
        warning("Second order interaction terms are not implemented",
                " for this model; they are treated as zero", call.=FALSE)
        break
      } else {
        sparse <- inherits(ddS, "sparse3Darray")
	if(hasInf) {
          deltaInf <- attr(ddS, "deltaInf")
          hasInf <- !is.null(deltaInf)
          if(hasInf) sparse <- sparse && inherits(deltaInf, "sparseMatrix")
	}
        if(gotScore) {
          ## add extra planes of zeroes to second-order model matrix
          ## (zero because the irregular components are part of the trend)
          paddim <- c(dim(ddS)[1:2], nirr)
          if(!sparse) {
            ddS <- abind::abind(ddS, array(0, dim=paddim), along=3)
          } else {
            ddS <- bind.sparse3Darray(ddS,
                                      sparse3Darray(dims=paddim),
                                      along=3)
          }
        }
      }
      ## ^^^^^^^^^^^^^^^^^  second term in DeltaScore ^^^^^^^^^^^^^^^^^^^^
      ## effect of addition/deletion of U[j]
      ## on score contribution from data points (sum automatically restricted to
      ## interior for border correction by earlier call to
      ## deltasuffstat(..., restrict = "first"))
      ddSX <- ddS[isdataB, , , drop=FALSE]
      eff.data.B <- marginSumsSparse(ddSX, c(2,3))
      ## check if any quadrature points have zero conditional intensity;
      ## these do not contribute to this term
      if(anyzerocifB)
        eff.data.B[zerocifB, ] <- 0
      ## save results for current subset of quadrature points 
      if(is.null(requested)) {
        eff.data <- eff.data.B
      } else {
        eff.data[current,] <- as.matrix(eff.data.B[currentB,,drop=FALSE])
      }
      ## 
      rm(ddSX, eff.data.B)
      ## ^^^^^^^^^^^^^^^^^  third term in DeltaScore ^^^^^^^^^^^^^^^^^^^^
      ## effect of addition/deletion of U[j] on integral term in score
      if(!sparse) {
        ## ::::::::::::::: full arrays, simpler code :::::::::::::::::::
        if(pseudo) {
          ## ---------------  likelihood or pseudolikelihood -----------
          ## model matrix after addition/deletion of each U[j]
          ## mombefore[i,j,] <- mom[i,]
          di <- dim(ddS)
          mombefore <- array(apply(momB, 2, rep, times=di[2]), dim=di)
          momchange <- ddS
          momchange[ , isdataB, ] <- - momchange[, isdataB, ]
          momafter <- mombefore + momchange
          ## effect of addition/deletion of U[j] on lambda(U[i], X)
          if(gotScore) {
            lamratio <- exp(tensor::tensor(momchange[,,REG,drop=FALSE],
                                           theta, 3, 1))
          } else {
            lamratio <- exp(tensor::tensor(momchange, theta, 3, 1))
          }
          lamratio <- array(lamratio, dim=dim(momafter))
          if(!hasInf) {
            #' cif is positive
            ddSintegrand <- lamB * (momafter * lamratio - mombefore)
          } else {
            #' cif can be zero
            zerobefore <- matrix(zerocifB, di[1], di[2])
            zerochange <- deltaInf * 1L
            zerochange[ , isdataB] <- - zerochange[ , isdataB]
            zeroafter  <- zerobefore + zerochange
            momZbefore <- mombefore
            momZbefore[ , zerocifB, ] <- 0
            IJK <- unname(which(array(zeroafter == 1, dim=di), arr.ind=TRUE))
            momZafter <- momafter
            momZafter[IJK] <- 0
            momZchange <- momZafter- momZbefore
            ddSintegrand <- lamB * (momZafter * lamratio - momZbefore)
          }
          rm(momchange, mombefore, momafter, lamratio)
        } else {
          ## ---------------  logistic composite likelihood -----------
          stop("Non-sparse method is not implemented for method = 'logi'!")
        }
        gc()
      } else {
        ## ::::::::::::::::::   sparse arrays   ::::::::::::::::::::::::
        if(logi) {
          ## ---------------  logistic composite likelihood -----------
          ## Delta suff. stat. with sign change for data/dummy (sparse3Darray)
          momchange <- ddS
          momchange[ , isdataB, ] <- - momchange[, isdataB, ]
          ## Evaluate theta^T %*% ddS (with sign -1/+1 according to data/dummy)
          ## as triplet sparse matrix
          if(gotScore){
            momchangeeffect <- tensorSparse(momchange[,,REG,drop=FALSE], theta, 3, 1)
          } else{
            momchangeeffect <- tensorSparse(momchange, theta, 3, 1)
          }
          ## Copy to each slice 
          momchangeeffect <- expandSparse(momchangeeffect,
                                          n = dim(ddS)[3], across = 3)
          ijk <- SparseIndices(momchangeeffect)
          ## Entrywise calculations below
          momchange <- as.numeric(momchange[ijk])
          mombefore <- mom[cbind(ijk$i,ijk$k)]
          momafter  <- mombefore + momchange
          ## Transform to change in probability
          expchange <- exp(momchangeeffect$x)
          lamBi <- lamB[ijk$i]
          logiprobBi <- logiprobB[ijk$i]
          changesignBj <- changesignB[ijk$j]
          pchange <- changesignBj*(lamBi * expchange / (lamBi*expchange + rho) - logiprobBi)
          ## Note: changesignBj * momchange == as.numeric(ddS[ijk])
          if(!hasInf) {
            #' cif is positive
            ddSintegrand <- momafter * pchange +
              logiprobBi * changesignBj * momchange
          } else {
            #' cif can be zero
            isdataBj <- isdataB[ijk$j]
            zerobefore <- as.logical(zerocifB[ijk$i])
            zerochange <- as.logical(deltaInf[cbind(ijk$i, ijk$j)])
            zerochange[isdataBj] <- - zerochange[isdataBj]
            zeroafter <- zerobefore + zerochange
            momZbefore <- ifelse(zerobefore, 0, mombefore)
            momZafter  <- ifelse(zeroafter,  0, momafter)
            momZchange <- momZafter - momZbefore
            ddSintegrand <- momZafter * pchange +
              logiprobBi * changesignBj * momZchange
          }
          ddSintegrand <- sparse3Darray(i = ijk$i, j = ijk$j, k = ijk$k,
                                        x = ddSintegrand,
                                        dims = dim(ddS))
        } else{
          ## ---------------  likelihood or pseudolikelihood -----------
          if(entrywise) {
            ## ......  sparse arrays, using explicit indices ......
            momchange <- ddS
            momchange[ , isdataB, ] <- - momchange[, isdataB, ]
            if(gotScore){
              lamratiominus1 <- expm1(tensorSparse(momchange[,,REG,drop=FALSE],
                                              theta, 3, 1))
            } else{
              lamratiominus1 <- expm1(tensorSparse(momchange, theta, 3, 1))
            }
            lamratiominus1 <- expandSparse(lamratiominus1,
                                           n = dim(ddS)[3], across = 3)
            ijk <- SparseIndices(lamratiominus1)
            ## Everything entrywise with ijk now:
            # lamratiominus1 <- lamratiominus1[cbind(ijk$i, ijk$j)]
            lamratiominus1 <- as.numeric(lamratiominus1$x)
            momchange <- as.numeric(momchange[ijk])
            mombefore <- momB[cbind(ijk$i, ijk$k)]
            momafter <- mombefore + momchange
            ## lamarray[i,j,k] <- lam[i]
            lamarray <- lamB[ijk$i]
            if(!hasInf) {
              #' cif is positive
              ddSintegrand <- lamarray * (momafter * lamratiominus1 + momchange)
            } else {
              #' cif can be zero
              isdataBj <- isdataB[ijk$j]
              zerobefore <- as.logical(zerocifB[ijk$i])
              zerochange <- as.logical(deltaInf[cbind(ijk$i, ijk$j)])
              zerochange[isdataBj] <- - zerochange[isdataBj]
              zeroafter <- zerobefore + zerochange
              momZbefore <- ifelse(zerobefore, 0, mombefore)
              momZafter  <- ifelse(zeroafter,  0, momafter)
              momZchange <- momZafter - momZbefore
              ddSintegrand <- lamarray*(momZafter*lamratiominus1 + momZchange)
            }
            ddSintegrand <- sparse3Darray(i = ijk$i, j = ijk$j, k = ijk$k,
                                          x = ddSintegrand,
                                          dims = dim(ddS))
          } else {
            ## ......  sparse array code ......
            ## Entries are required only for pairs i,j which interact.
            ## mombefore[i,j,] <- mom[i,]
            mombefore <- mapSparseEntries(ddS, 1, momB, conform=TRUE, across=3)
            momchange <- ddS
            momchange[ , isdataB, ] <- - momchange[, isdataB, ]
            ##            momafter <- evalSparse3Dentrywise(mombefore + momchange)
            momafter <- mombefore + momchange
            ## lamarray[i,j,k] <- lam[i]
            lamarray <- mapSparseEntries(ddS, 1, lamB, conform=TRUE, across=3)
            if(gotScore){
              lamratiominus1 <- expm1(tensorSparse(momchange[,,REG,drop=FALSE],
                                              theta, 3, 1))
            } else{
              lamratiominus1 <- expm1(tensorSparse(momchange,theta, 3, 1))
            }
            lamratiominus1 <- expandSparse(lamratiominus1,
                                           n = dim(ddS)[3], across = 3)
            ##            ddSintegrand <- evalSparse3Dentrywise(lamarray * (momafter* lamratiominus1 + momchange))
            if(!hasInf) {
              #' cif is positive 
              ddSintegrand <- lamarray * (momafter* lamratiominus1 + momchange)
            } else {
              #' cif has zeroes
              zerobefore <- mapSparseEntries(ddS, 1, zerocifB,
                                             conform=TRUE, across=3)
              zerochange <- mapSparseEntries(ddS, 1, deltaInf,
                                             conform=TRUE, across=2)
              zerochange[,isdataB,] <- - zerochange[,isdataB,]
              zeroafter <- zerobefore + zerochange
              momZbefore <- mombefore
              momZafter  <- momafter
              momZbefore[ , zerocifB , ] <- 0
              IJK <- SparseIndices(zeroafter)
              momZafter[IJK] <- 0
              momZchange <- momZafter - momZbefore
              ddSintegrand <- lamarray*(momZafter*lamratiominus1 + momZchange) 
            }
          }
          rm(lamratiominus1, lamarray, momafter)
        }
        rm(momchange, mombefore)
      }
      if(anyzerocifB) {
        ddSintegrand[zerocifB,,] <- 0
        ddSintegrand[,zerocifB,] <- 0
      }
      ## integrate
      if(logi){
        # eff.back.B <- tensorSparse(ddSintegrand, rep(1, length(wB)), 1, 1)
        eff.back.B <- marginSumsSparse(ddSintegrand, c(2,3))
      } else{
        eff.back.B <- changesignB * tensorSparse(ddSintegrand, wB, 1, 1)
      }
      ## save contribution
      if(is.null(requested)) {
        eff.back <- eff.back.B
      } else {
        eff.back[current,] <- as.matrix(eff.back.B[currentB, , drop=FALSE])
      }
    }
    ## {{{{{{{{{{{{{   E N D   O F   L O O P   }}}}}}}}}}}}}

    ## total
    eff <- eff + eff.data - eff.back
    eff <- as.matrix(eff)
  }
  
  if("increments" %in% what) {
    result$increm <- list(ddS=ddS,
                          ddSintegrand=ddSintegrand,
                          isdata=isdata,
                          wQ=w)
  }
  if(!any(c("leverage", "influence", "dfbetas") %in% what))
    return(result)

  # ............ compute leverage, influence, dfbetas ..............

  if(!is.matrix(invhess))
    stop("Internal error: inverse Hessian not available", call.=FALSE)
  
  # compute basic contribution from each quadrature point
  nloc <- npoints(loc)
  switch(method,
         interpreted = {
           b <- numeric(nloc)
           for(i in seq(nloc)) {
             effi <- eff[i,, drop=FALSE]
             momi <- mom[i,, drop=FALSE]
             b[i] <- momi %*% invhess %*% t(effi)
           }
         },
         C = {
           b <- bilinearform(mom, invhess, eff)
         })
  
  # .......... leverage .............
  
  if("leverage" %in% what) {
    ## values of leverage (diagonal) at points of 'loc'
    h <- b * lam
    ok <- is.finite(h)
    geomsmooth <- geomsmooth && all(h[!isdata & ok] >= 0)
    if(mt)
      h <- data.frame(leverage=h, type=marks(loc))
    levval <- (loc %mark% h)[ok]
    levvaldum <- levval[!isdata[ok]]
    if(!mt) {
      levsmo <- Smooth(levvaldum,
                       sigma=smallsigma,
                       geometric=geomsmooth,
                       dimyx=dimyx, eps=eps)
      levnearest <- nnmark(levvaldum, dimyx=dimyx, eps=eps)
    } else {
      levsplitdum <- split(levvaldum, reduce=TRUE)
      levsmo <- Smooth(levsplitdum,
                       sigma=smallsigma,
                       geometric=geomsmooth,
                       dimyx=dimyx, eps=eps)
      levnearest <- solapply(levsplitdum, nnmark, dimyx=dimyx, eps=eps)
    }
    ## mean level
    if(fit.is.poisson) {
      a <- area(Window(loc)) * markspace.integral(loc)
      levmean <- p/a
    } else {
      levmean <- if(!mt) mean(levnearest) else mean(sapply(levnearest, mean))
    }
    lev <- list(val=levval, smo=levsmo, ave=levmean, nearest=levnearest)
    result$lev <- lev
  }
  # .......... influence .............
  if("influence" %in% what) {
    if(logi){
      X <- loc
      effX <- as.numeric(isdata) * eff - mom * (inside * logiprob)
    } else{
      # values of influence at data points
      X <- loc[isdata]
      effX <- eff[isdata, ,drop=FALSE]
    }
    M <- (1/p) * quadform(effX, invhess)
    if(logi || is.multitype(X)) {
      # result will have several columns of marks
      M <- data.frame(influence=M)
      if(logi) M$isdata <- factor(isdata, levels = c(TRUE, FALSE), labels = c("data", "dummy"))
      if(is.multitype(X)) M$type <- marks(X)
    } 
    V <- X %mark% M
    result$infl <- V
  }
  # .......... dfbetas .............
  if("dfbetas" %in% what) {
    if(logi){
      M <- as.numeric(isdata) * eff - mom * (inside * logiprob)
      M <- t(invhess %*% t(M))
      Mdum <- M
      Mdum[isdata,] <- 0
      Mdum <- Mdum / w.quad(Q)
      DFB <- msr(Q, M[isdata, ], Mdum)
    } else {
      vex <- invhess %*% t(mom)
      dex <- invhess %*% t(eff)
      switch(method,
             interpreted = {
               dis <- con <- matrix(0, nloc, ncol(mom))
               for(i in seq(nloc)) {
                 vexi <- vex[,i, drop=FALSE]
                 dexi <- dex[,i, drop=FALSE]
                 dis[i, ] <- if(isdata[i]) dexi else 0
                 con[i, ] <- if(inside[i]) (- lam[i] * vexi) else 0
               }
             },
             C = {
               dis <- t(dex)
               dis[!isdata,] <- 0
               con <- - lam * t(vex)
               con[(lam == 0 | !inside), ] <- 0
             })
      colnames(dis) <- colnames(con) <- colnames(mom)
      DFB <- msr(Q, dis[isdata, ], con)
    }
    #' add smooth component
    DFB <- augment.msr(DFB, sigma=smallsigma, dimyx=dimyx, eps=eps)
    result$dfbetas <- DFB
  }
  return(result)
}

## >>>>>>>>>>>>>>>>>>>>>>>  HELPER FUNCTIONS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

## extract derivatives from covariate functions
## WARNING: these are not the score components in general

ppmDerivatives <- function(fit, what=c("gradient", "hessian"),
                            Dcovfun=NULL, loc, covfunargs=list()) {
  what <- match.arg(what)
  if(!is.null(Dcovfun)) {
    ## use provided function Dcov to compute derivatives
    Dvalues <- mpl.get.covariates(Dcovfun, loc, covfunargs=covfunargs)
    result <- as.matrix(as.data.frame(Dvalues))
    return(result)
  }
  ## any irregular parameters?
  if(length(covfunargs) == 0)
    return(NULL)
  ## Try to extract derivatives from covariate functions
  ## This often works if the functions were created by symbolic differentiation
  fvalues <- mpl.get.covariates(fit$covariates, loc, covfunargs=covfunargs,
                                need.deriv=TRUE)
  Dlist <- attr(fvalues, "derivatives")[[what]]
  if(length(Dlist) == 0)
    return(NULL)
  switch(what,
         gradient = {
           result <- do.call(cbind, unname(lapply(Dlist, as.data.frame)))
           result <- as.matrix(result)
         },
         hessian = {
           ## construct array containing Hessian matrices
           biga <- do.call(blockdiagarray, Dlist)
           ## flatten matrices 
           result <- matrix(biga, nrow=dim(biga)[1L])
         })
  return(result)
}

## >>>>>>>>>>>>>>>>  PLOT METHODS <<<<<<<<<<<<<<<<<<<<<

plot.leverage.ppm <- function(x, ...,
                              what=c("smooth", "nearest", "exact"),
                              showcut=TRUE,
                              args.cut=list(drawlabels=FALSE),
                              multiplot=TRUE) {
  what <- match.arg(what)
  fitname <- x$fitname
  defaultmain <- paste("Leverage for", fitname)

  y <- x$lev

  if(what == "exact") {
    #' plot exact quadrature locations and leverage values
    yval <- y$val
    dont.complain.about(yval)
    z <- do.call(plot,
                 resolve.defaults(list(x=quote(yval), multiplot=multiplot),
                                  list(...),
                                  list(main=defaultmain)))
    return(invisible(z))
  }

  smo <- as.im(x, what=what)
  if(is.null(smo)) return(invisible(NULL))
  
  ave <- y$ave
  if(!multiplot && inherits(smo, "imlist")) {
    ave <- ave * length(smo)
    smo <- do.call(harmonise.im, unname(smo))
    ##    smo <- Reduce("+", smo)
    smo <- im.apply(smo, sum, check=FALSE)
    defaultmain <- c(defaultmain, "(sum over all types of point)")
  }
  args.contour <- resolve.defaults(args.cut, list(levels=ave))
  cutinfo <- list(addcontour=showcut,
                  args.contour=args.contour)
  if(is.im(smo)) {
    do.call(plot.im,
            resolve.defaults(list(quote(smo)),
                             cutinfo,
                             list(...),
                             list(main=defaultmain)))
  } else if(inherits(smo, "imlist")) {
    do.call(plot.solist,
            resolve.defaults(list(quote(smo)),
                             cutinfo,
                             list(...),
                             list(main=defaultmain)))
  } 
  invisible(NULL)
}


persp.leverage.ppm <- function(x, ..., what=c("smooth", "nearest"),
                               main, zlab="leverage") {
  if(missing(main)) main <- deparse(substitute(x))
  what <- match.arg(what)
  y <- as.im(x, what=what)
  if(is.null(y)) return(invisible(NULL))
  if(is.im(y)) return(persp(y, main=main, ..., zlab=zlab))
  pa <- par(ask=TRUE)
  lapply(y, persp, main=main, ..., zlab=zlab)
  par(pa)
  return(invisible(NULL))
}
  
contour.leverage.ppm <- function(x, ...,
                                 what=c("smooth", "nearest"),
                                 showcut=TRUE,
                                 args.cut=list(col=3, lwd=3, drawlabels=FALSE),
                                 multiplot=TRUE) {
  defaultmain <- paste("Leverage for", x$fitname)
  smo <- as.im(x, what=what)
  y <- x$lev
  ave <- y$ave
  if(!multiplot && inherits(smo, "imlist")) {
    ave <- ave * length(smo)
    smo <- do.call(harmonise.im, unname(smo))
    ##    smo <- Reduce("+", smo)
    smo <- im.apply(smo, sum, check=FALSE)
    defaultmain <- c(defaultmain, "(sum over all types of point)")
  }
  
  argh1 <- resolve.defaults(list(...),
                            list(main=defaultmain))
  argh2 <- resolve.defaults(args.cut,
                            list(levels=ave),
                            list(...))

  if(is.im(smo)) {
    #' single panel
    out <- do.call(contour, append(list(x=smo), argh1))
    if(showcut)
      do.call(contour, append(list(x=smo, add=TRUE), argh2))
  } else if(inherits(smo, "imlist")) {
    #' multiple panels
    argh <- append(list(x=smo, plotcommand ="contour"), argh1)
    if(showcut) {
      argh <- append(argh,
                     list(panel.end=function(i, y, ...) contour(y, ...),
                          panel.end.args=argh2))
    } 
    out <- do.call(plot.solist, argh) 
  } else {
    warning("Unrecognised format")
    out <- NULL
  }
  return(invisible(out))
}

plot.influence.ppm <- function(x, ..., multiplot=TRUE) {
  fitname <- x$fitname
  defaultmain <- paste("Influence for", fitname)
  y <- x$infl
  if(multiplot && isTRUE(ncol(marks(y)) > 1)) {
    # apart from the influence value, there may be additional columns of marks
    # containing factors: {type of point}, { data vs dummy in logistic case }
    ma <- as.data.frame(marks(y))
    fax <- sapply(ma, is.factor)
    nfax <- sum(fax)
    if(nfax == 1) {
      # split on first available factor, and remove this factor
      y <- split(y, reduce=TRUE)
    } else if(nfax > 1) {
      # several factors: split according to them all, and remove them all
      f.all <- do.call(interaction, ma[fax])
      z <- y %mark% ma[,!fax]
      y <- split(z, f.all)
    }
  }
  do.call(plot,
          resolve.defaults(list(quote(y)),
                           list(...),
                           list(main=defaultmain,
                                multiplot=multiplot,
                                which.marks=1)))
}

## >>>>>>>>>>>>>>>>  CONVERSION METHODS <<<<<<<<<<<<<<<<<<<<<


as.im.leverage.ppm <- function(X, ..., what=c("smooth", "nearest")) {
  what <- match.arg(what)
  y <- switch(what,
              smooth = X$lev$smo,
              nearest = X$lev$nearest)
  if(is.null(y))
    warning(paste("Data for", sQuote(what), "image are not available:",
                  "please recompute the leverage using the current spatstat"),
            call.=FALSE)
  return(y) # could be either an image or a list of images
}

as.function.leverage.ppm <- function(x, ...) {
  X <- x$lev$val
  S <- ssf(unmark(X), marks(X))
  return(as.function(S))
}

as.ppp.influence.ppm <- function(X, ...) {
  return(X$infl)
}

as.owin.leverage.ppm <- function(W, ..., fatal=TRUE) {
  y <- as.im(W)
  if(inherits(y, "imlist")) y <- y[[1L]]
  as.owin(y, ..., fatal=fatal)
}

as.owin.influence.ppm <- function(W, ..., fatal=TRUE) {
  as.owin(as.ppp(W), ..., fatal=fatal)
}

domain.leverage.ppm <- domain.influence.ppm <-
  Window.leverage.ppm <- Window.influence.ppm <-
  function(X, ...) { as.owin(X) } 


## >>>>>>>>>>>>>>>>  PRINT METHODS <<<<<<<<<<<<<<<<<<<<<

print.leverage.ppm <- function(x, ...) {
  splat("Point process leverage function")
  fitname <- x$fitname
  splat("for model:", fitname)
  lev <- x$lev
  splat("\nExact values:")
  print(lev$val)
  splat("\nSmoothed values:")
  print(lev$smo)
  ## for compatibility we retain the x$fit usage
  if(x$fit.is.poisson %orifnull% is.poisson(x$fit))
    splat("\nAverage value:", lev$ave)
  return(invisible(NULL))
}

print.influence.ppm <- function(x, ...) {
  splat("Point process influence measure")  
  fitname <- x$fitname
  splat("for model:", fitname)
  splat("\nExact values:")
  print(x$infl)
  return(invisible(NULL))
}

## >>>>>>>>>>>>>>>>  SUBSET METHODS <<<<<<<<<<<<<<<<<<<<<

"[.leverage.ppm" <- function(x, i, ..., update=TRUE) {
  if(missing(i)) return(x)
  y <- x$lev
  smoi <- if(is.im(y$smo)) y$smo[i, ...] else solapply(y$smo, "[", i=i, ...)
  if(!inherits(smoi, c("im", "imlist"))) return(smoi)
  y$smo <- smoi
  y$val <- y$val[i, ...]
  if(update) 
    y$ave <- if(is.im(smoi)) mean(smoi) else mean(sapply(smoi, mean))
  x$lev <- y
  return(x)
}

"[.influence.ppm" <- function(x, i, ...) {
  if(missing(i)) return(x)
  y <- x$infl[i, ...]
  if(!is.ppp(y)) return(y)
  x$infl <- y
  return(x)
}

## >>>>>>>>>>>>>>>>  SMOOTHING, INTEGRATION <<<<<<<<<<<<<<<<<<<<<

integral.leverage.ppm <- function(f, domain=NULL, ...) {
  y <- as.im(f, what="nearest")
  z <- if(is.im(y)) {
         integral(y, domain=domain, ...)
       } else if(is.solist(y)) {
         sapply(y, integral, domain=domain, ...)
       } else stop("Internal format is not understood")
  if(length(dim(z))) z <- t(z)
  return(z)
}

integral.influence.ppm <- function(f, domain=NULL, ...) {
  if(!is.null(domain)) {
    if(is.tess(domain)) {
      z <- sapply(tiles(domain), integral, f=f)
      if(length(dim(z))) z <- t(z)
      return(z)
    }
    f <- f[domain]
  }
  #' actual computation
  y <- as.ppp(f)
  return(colSums(as.matrix(marks(y))))
}

mean.leverage.ppm <- function(x, ...) {
  y <- as.im(x, what="nearest")
  mean(y, ...)
}

Smooth.leverage.ppm <- function(X, ...) Smooth(X$lev$val, ...)

Smooth.influence.ppm <- function(X, ...) Smooth(as.ppp(X), ...)

## >>>>>>>>>>>>>>>>  GEOMETRICAL OPERATIONS <<<<<<<<<<<<<<<<<<<<<

shift.leverage.ppm <- function(X, ...) {
  vec <- getlastshift(shift(as.owin(X), ...))
  X$lev$val <- shift(X$lev$val, vec=vec)
  smo <- X$lev$smo
  X$lev$smo <-
    if(is.im(smo)) shift(smo, vec=vec) else solapply(smo, shift, vec=vec)
  return(putlastshift(X, vec))
}

shift.influence.ppm <- function(X, ...) {
  X$infl <- shift(X$infl, ...)
  return(putlastshift(X, getlastshift(X$infl)))
}