File: logistic.R

package info (click to toggle)
r-cran-spatstat.core 2.4-4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,440 kB
  • sloc: ansic: 4,402; sh: 13; makefile: 5
file content (267 lines) | stat: -rw-r--r-- 9,817 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
##
##  logistic.R
##
##   $Revision: 1.28 $  $Date: 2020/11/27 03:04:30 $
##
##  Logistic composite likelihood method
##
##   (quadscheme construction is now in 'logiquad.R')

logi.engine <- function(Q,
                        trend = ~1,
                        interaction,
                        ...,
                        covariates=NULL,
                        subsetexpr=NULL,
                        clipwin=NULL,
                        correction="border",
                        rbord=reach(interaction),
                        covfunargs=list(),
                        allcovar=FALSE,
                        vnamebase=c("Interaction", "Interact."),
                        vnameprefix=NULL,
                        justQ = FALSE,
                        savecomputed = FALSE,
                        precomputed = NULL,
                        VB=FALSE
                        ){
  if(is.null(trend)) trend <- ~1 
  if(is.null(interaction)) interaction <- Poisson()
  want.trend <- !identical.formulae(trend, ~1)
  want.inter <- !is.poisson(interaction)
  want.subset <- !is.null(subsetexpr)
  # validate choice of edge correction
  correction <- pickoption("correction", correction,
                           c(border="border",
                             periodic="periodic",
                             isotropic="isotropic",
                             Ripley="isotropic",
                             trans="translate",
                             translate="translate",
                             translation="translate",
                             none="none"))
  # rbord applies only to border correction
  if(correction == "border") {
    check.1.real(rbord, "In ppm")
    explain.ifnot(rbord >= 0, "In ppm")
  } else rbord <- 0
  # backdoor stuff
  if(!missing(vnamebase)) {
    if(length(vnamebase) == 1)
      vnamebase <- rep.int(vnamebase, 2)
    if(!is.character(vnamebase) || length(vnamebase) != 2)
      stop("Internal error: illegal format of vnamebase")
  }
  if(!is.null(vnameprefix)) {
    if(!is.character(vnameprefix) || length(vnameprefix) != 1)
      stop("Internal error: illegal format of vnameprefix")
  }
  # create dummy points
  if(inherits(Q, "ppp")){
    Xplus <- Q
    Q <- quadscheme.logi(Xplus, ...)
    D <- Q$dummy
    Dinfo <- Q$param
  } else if(checkfields(Q, c("data", "dummy"))) {
    Xplus <- Q$data
    D <- Q$dummy
    Dinfo <- Q$param
    if(is.null(Dinfo)){
      Dinfo <- list(how="given", rho=npoints(D)/(area(D)*markspace.integral(D)))
    }
    Q <- quadscheme.logi(Xplus, D)
  } else stop("Format of object Q is not understood")
  ## clip to subset?
  if(!is.null(clipwin)) {
    if(is.data.frame(covariates)) {
      ok <- inside.owin(union.quad(Q), w=clipwin)
      covariates <- covariates[ok, , drop=FALSE]
    }
    Q <- Q[clipwin]
    Xplus <- Q$data
    D     <- Q$dummy
  }
  if (justQ) 
    return(Q)
  ### Dirty way of recording arguments so that the model can be refitted later (should probably be done using call, eval, envir, etc.):
  extraargs <- list(covfunargs = covfunargs, allcovar = allcovar, vnamebase = vnamebase, vnameprefix = vnameprefix)
  extraargs <- append(extraargs, list(...))
  ## Dummy intensity
  if(correction == "border" && Dinfo$how=="grid"){
    Dbord <- D[bdist.points(D)>=rbord]
    Dinfo$rho <- npoints(Dbord)/(eroded.areas(as.owin(Dbord), rbord)*markspace.integral(Dbord))
  }
  rho <- Dinfo$rho
  ##Setting the B from Barker dynamics (relative to dummy intensity)
  B <- list(...)$Barker
  if(is.null(B))
    B <- 1
  B <- B*rho
  Dinfo <- append(Dinfo, list(B=B))
  Dinfo <- append(Dinfo, list(extraargs=extraargs))
  # 
  Wplus <- as.owin(Xplus)
  nXplus <- npoints(Xplus)
  U <- superimpose(Xplus, D, W=Wplus, check=FALSE)
#  E <- equalpairs(U, Xplus, marked = is.marked(Xplus))
  E <- cbind(1:nXplus, 1:nXplus)
#  
  computed <- if (savecomputed) list(X = Xplus, Q = Q, U = U) else list()
  # assemble covariate data frame
  if(want.trend || want.subset) {
    tvars <- variablesinformula(trend)
    if(want.subset)
      tvars <- union(tvars, all.vars(subsetexpr))
    if(!is.data.frame(covariates)) {
      ## resolve 'external' covariates
      externalvars <- setdiff(tvars, c("x", "y", "marks"))
      tenv <- environment(trend)
      covariates <- getdataobjects(externalvars, tenv, covariates, fatal=TRUE)
    }
    wantxy <- c("x", "y") %in% tvars
    wantxy <- wantxy | rep.int(allcovar, 2)
    cvdf <- data.frame(x=U$x, y=U$y)[, wantxy, drop=FALSE]
    if(!is.null(covariates)) {
      df <- mpl.get.covariates(covariates, U, "quadrature points", covfunargs)
      cvdf <- cbind(cvdf, df)
    }
    wantmarks <- "marks" %in% tvars
    if(wantmarks) cvdf <- cbind(cvdf, marks = marks(U))
  } else cvdf <- NULL
  # evaluate interaction sufficient statistics
  if (!is.null(ss <- interaction$selfstart)) 
    interaction <- ss(Xplus, interaction)
  V <- evalInteraction(Xplus, U, E, interaction, correction, precomputed = precomputed, savecomputed = savecomputed)
  if(!is.matrix(V))
    stop("evalInteraction did not return a matrix")
  if (savecomputed) 
    computed <- append(computed, attr(V, "computed"))
  IsOffset <- attr(V, "IsOffset")
  if(is.null(IsOffset)) IsOffset <- rep.int(FALSE, ncol(V))
  # determine names
  if(ncol(V) > 0) {
    Vnames <- colnames(V)
    if(is.null(Vnames)) {
      nc <- ncol(V)
      Vnames <- if(nc == 1) vnamebase[1L] else paste(vnamebase[2L], 1:nc, sep="")
      colnames(V) <- Vnames
    } else if(!is.null(vnameprefix)) {
      Vnames <- paste(vnameprefix, Vnames, sep="")
      colnames(V) <- Vnames
    }
  } else Vnames <- character(0)
  # combine all data
  glmdata <- as.data.frame(V)
  if(!is.null(cvdf)) glmdata <- cbind(glmdata, cvdf)
  # construct response and weights
  ok <- if(correction == "border") (bdist.points(U) >= rbord) else rep.int(TRUE, npoints(U))
  # Keep only those quadrature points for which the
  # conditional intensity is nonzero.
  KEEP  <- if(ncol(V)>0) matrowall(V != -Inf) else rep.int(TRUE, npoints(U))
  ok <- ok & KEEP
  wei <- c(rep.int(1,npoints(Xplus)),rep.int(B/rho,npoints(D)))
  resp <- c(rep.int(1,npoints(Xplus)),rep.int(0,npoints(D)))
  ## User-defined subset:
  if(!is.null(subsetexpr)) {
    USERSUBSET <- eval(subsetexpr, glmdata, environment(trend))
    ok <- ok & USERSUBSET
  }
  # add offset, subset and weights to data frame
  # using reserved names beginning with ".logi."
  glmdata <- cbind(glmdata,
                   .logi.Y = resp,
                   .logi.B = B,
                   .logi.w = wei,
                   .logi.ok =ok)
  # build glm formula 
  # (reserved names begin with ".logi.")
  trendpart <- paste(as.character(trend), collapse=" ")
  fmla <- paste(".logi.Y ", trendpart)
  # Interaction terms
  if(want.inter) {
    VN <- Vnames
    # enclose offset potentials in 'offset(.)'
    if(any(IsOffset))
      VN[IsOffset] <- paste("offset(", VN[IsOffset], ")", sep="")
    fmla <- paste(c(fmla, VN), collapse="+")
  }
  # add offset intrinsic to logistic technique
  fmla <- paste(fmla, "offset(-log(.logi.B))", sep="+")
  fmla <- as.formula(fmla)
  # to satisfy package checker: 
  .logi.B <- B
  .logi.w <- wei
  .logi.ok  <- ok
  .logi.Y   <- resp
  # suppress warnings from code checkers
  dont.complain.about(.logi.B, .logi.w, .logi.ok, .logi.Y)
  # go
  ##fit <- glm(fmla, data=glmdata,
  ##           family=binomial(), subset = .logi.ok, weights = .logi.w)
  fit <- if(VB) 
           vblogit.fmla(fmla, data = glmdata, 
                        subset = .logi.ok, weights = .logi.w, ...)
         else 
           glm(fmla, data = glmdata, 
               family = binomial(), subset = .logi.ok, weights = .logi.w)
  environment(fit$terms) <- sys.frame(sys.nframe())
  ## Fitted coeffs
  co <- coef(fit)
  fitin <- fii(interaction, co, Vnames, IsOffset)

  ## Saturated log-likelihood:
  satlogpl <- sum(ok*resp*log(B))
  ## Max. value of log-likelihood:
  maxlogpl <- logLik(fit) + satlogpl

  # Stamp with spatstat version number
  spv <- package_version(versionstring.spatstat())
  the.version <- list(major=spv$major,
                      minor=spv$minor,
                      release=spv$patchlevel,
                      date="$Date: 2020/11/27 03:04:30 $")

  ## Compile results
  fit <- list(method      = "logi",
              fitter      = "glm",
              projected   = FALSE,
              coef        = co,
              trend       = trend,
              interaction = interaction,
              fitin       = fitin,
              Q           = Q,
              maxlogpl    = maxlogpl,
              satlogpl    = satlogpl,
              internal    = list(Vnames  = Vnames,
                                 IsOffset=IsOffset,
                                 glmdata = glmdata,
                                 glmfit = fit,
                                 logistic = Dinfo,
                                 computed = computed,
                                 vnamebase=vnamebase,
                                 vnameprefix=vnameprefix,
                                 VB = if(VB) TRUE else NULL,
                                 priors = if(VB) fit$priors else NULL
                                 ),
              covariates  = mpl.usable(covariates),
              covfunargs= covfunargs,
              subsetexpr = subsetexpr,
              correction  = correction,
              rbord       = rbord,
              fisher      = NULL,
              varcov      = NULL, # if(VB) fit$S else NULL,
              terms       = terms(trend),
              version     = the.version,
              problems    = list()
              )
  class(fit) <- "ppm"
  return(fit)
}


forbid.logi <- function(object) {
  if(object$method == "logi")
    stop("Sorry, this is not implemented for method=\'logi\'")
  return(invisible(NULL))
}