1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
|
# Lurking variable plot for arbitrary covariate.
#
#
# $Revision: 1.75 $ $Date: 2022/02/12 09:11:35 $
#
lurking <- function(object, ...) {
UseMethod("lurking")
}
lurking.ppp <- lurking.ppm <- function(object, covariate,
type="eem",
cumulative=TRUE,
...,
plot.it=TRUE,
plot.sd=is.poisson(object),
clipwindow=default.clipwindow(object),
rv = NULL,
envelope=FALSE, nsim=39, nrank=1,
typename,
covname, oldstyle=FALSE,
check=TRUE,
verbose=TRUE,
nx=128,
splineargs=list(spar=0.5),
internal=NULL) {
cl <- match.call()
clenv <- parent.frame()
## validate object
if(is.ppp(object)) {
X <- object
object <- ppm(X ~1, forcefit=TRUE)
dont.complain.about(X)
} else verifyclass(object, "ppm")
## default name for covariate
if(missing(covname) || is.null(covname)) {
co <- cl$covariate
covname <- if(is.name(co)) as.character(co) else
if(is.expression(co)) format(co[[1]]) else NULL
}
Xsim <- NULL
if(!identical(envelope, FALSE)) {
## compute simulation envelope
if(!identical(envelope, TRUE)) {
## some kind of object
Y <- envelope
if(is.list(Y) && all(sapply(Y, is.ppp))) {
Xsim <- Y
envelope <- TRUE
} else if(inherits(Y, "envelope")) {
Xsim <- attr(Y, "simpatterns")
if(is.null(Xsim))
stop("envelope does not contain simulated point patterns")
envelope <- TRUE
} else stop("Unrecognised format of argument: envelope")
nXsim <- length(Xsim)
if(missing(nsim) && (nXsim < nsim)) {
warning(paste("Only", nXsim, "simulated patterns available"))
nsim <- nXsim
}
}
}
## may need to refit the model
if(plot.sd && is.null(getglmfit(object)))
object <- update(object, forcefit=TRUE, use.internal=TRUE)
## match type argument
type <- pickoption("type", type,
c(eem="eem",
raw="raw",
inverse="inverse",
pearson="pearson",
Pearson="pearson"))
if(missing(typename))
typename <- switch(type,
eem="exponential energy weights",
raw="raw residuals",
inverse="inverse-lambda residuals",
pearson="Pearson residuals")
## extract spatial locations
Q <- quad.ppm(object)
## datapoints <- Q$data
quadpoints <- union.quad(Q)
Z <- is.data(Q)
wts <- w.quad(Q)
## subset of quadrature points used to fit model
subQset <- getglmsubset(object)
if(is.null(subQset)) subQset <- rep.int(TRUE, n.quad(Q))
#################################################################
## compute the covariate
if(is.im(covariate)) {
covvalues <- covariate[quadpoints, drop=FALSE]
covrange <- internal$covrange %orifnull% range(covariate, finite=TRUE)
} else if(is.vector(covariate) && is.numeric(covariate)) {
covvalues <- covariate
covrange <- internal$covrange %orifnull% range(covariate, finite=TRUE)
if(length(covvalues) != quadpoints$n)
stop("Length of covariate vector,", length(covvalues), "!=",
quadpoints$n, ", number of quadrature points")
} else if(is.expression(covariate)) {
## Expression involving covariates in the model
glmdata <- getglmdata(object)
if(is.null(glmdata)) {
## default
glmdata <- data.frame(x=quadpoints$x, y=quadpoints$y)
if(is.marked(quadpoints))
glmdata$marks <- marks(quadpoints)
} else if(is.data.frame(glmdata)) {
## validate
if(nrow(glmdata) != npoints(quadpoints))
stop("Internal error: nrow(glmdata) =", nrow(glmdata),
"!=", npoints(quadpoints), "= npoints(quadpoints)")
} else stop("Internal error: format of glmdata is not understood")
## ensure x and y are in data frame
if(!all(c("x","y") %in% names(glmdata))) {
glmdata$x <- quadpoints$x
glmdata$y <- quadpoints$y
}
if(!is.null(object$covariates)) {
## Expression may involve an external covariate that's not used in model
neednames <- all.vars(covariate)
if(!all(neednames %in% colnames(glmdata))) {
moredata <- mpl.get.covariates(object$covariates, quadpoints,
covfunargs=object$covfunargs)
use <- !(names(moredata) %in% colnames(glmdata))
glmdata <- cbind(glmdata, moredata[,use,drop=FALSE])
}
}
## Evaluate expression
sp <- parent.frame()
covvalues <- eval(covariate, envir= glmdata, enclos=sp)
covrange <- internal$covrange %orifnull% range(covvalues, finite=TRUE)
if(!is.numeric(covvalues))
stop("The evaluated covariate is not numeric")
} else
stop(paste("The", sQuote("covariate"), "should be either",
"a pixel image, an expression or a numeric vector"))
#################################################################
## Secret exit
if(identical(internal$getrange, TRUE))
return(covrange)
################################################################
## Residuals/marks attached to appropriate locations.
## Stoyan-Grabarnik weights are attached to the data points only.
## Others (residuals) are attached to all quadrature points.
resvalues <-
if(!is.null(rv)) rv
else if(type=="eem") eem(object, check=check)
else residuals(object, type=type, check=check)
if(inherits(resvalues, "msr")) {
## signed or vector-valued measure; extract increment masses
resvalues <- resvalues$val
if(ncol(as.matrix(resvalues)) > 1)
stop("Not implemented for vector measures; use [.msr to split into separate components")
}
## NAMES OF THINGS
## name of the covariate
if(is.null(covname))
covname <- if(is.expression(covariate)) covariate else "covariate"
## type of residual/mark
if(missing(typename))
typename <- if(!is.null(rv)) "rv" else ""
clip <-
(!is.poisson.ppm(object) || !missing(clipwindow)) &&
!is.null(clipwindow)
## CALCULATE
stuff <- LurkEngine(object=object,
type=type, cumulative=cumulative, plot.sd=plot.sd,
quadpoints=quadpoints,
wts=wts,
Z=Z,
subQset=subQset,
covvalues=covvalues,
resvalues=resvalues,
clip=clip,
clipwindow=clipwindow,
cov.is.im=is.im(covariate),
covrange=covrange,
typename=typename,
covname=covname,
cl=cl, clenv=clenv,
oldstyle=oldstyle, check=check, verbose=verbose,
nx=nx, splineargs=splineargs,
envelope=envelope, nsim=nsim, nrank=nrank, Xsim=Xsim,
internal=internal)
## --------------- PLOT ----------------------------------
if(plot.it && inherits(stuff, "lurk")) {
plot(stuff, ...)
return(invisible(stuff))
} else {
return(stuff)
}
}
# ........... calculations common to all methods .........................
LurkEngine <- function(object, type, cumulative=TRUE, plot.sd=TRUE,
quadpoints, wts, Z, subQset,
covvalues, resvalues,
clip, clipwindow, cov.is.im=FALSE, covrange,
typename, covname,
cl, clenv,
oldstyle=FALSE, check=TRUE,
verbose=FALSE, nx, splineargs,
envelope=FALSE, nsim=39, nrank=1, Xsim=list(),
internal=list(), checklength=TRUE) {
stopifnot(is.ppm(object) || is.slrm(object))
## validate covariate values
covvalues <- as.numeric(covvalues)
resvalues <- as.numeric(resvalues)
if(checklength) {
nqu <- npoints(quadpoints)
nco <- length(covvalues)
nre <- length(resvalues)
nwt <- length(wts)
nZ <- length(Z)
should <- if(type == "eem") c(nco, nwt, nZ) else c(nco, nwt, nZ, nre)
if(!all(should == nqu)) {
typeblurb <- paste("type =", sQuote(type))
typeblurb <- paren(typeblurb, "[")
gripe1 <- paste("Failed initial data check",
paste0(typeblurb, ":"))
gripe2 <- paste("!=", nqu, "= npoints(quadpoints)")
if(nco != nqu)
stop(paste(gripe1, "length(covvalues) =", nco, gripe2))
if(nwt != nqu)
stop(paste(gripe1, "length(wts) =", nwt, gripe2))
if(nZ != nqu)
stop(paste(gripe1, "length(Z) =", nZ, gripe2))
}
if(type == "eem" && nre != sum(Z))
stop(paste("Failed initial data check [type='eem']: ",
"length(resvalues) =", nre,
"!=", sum(Z), "= sum(Z)"))
}
##
nbg <- is.na(covvalues)
if(any(offending <- nbg & subQset)) {
if(cov.is.im) {
warning(paste(sum(offending), "out of", length(offending),
"quadrature points discarded because",
ngettext(sum(offending), "it lies", "they lie"),
"outside the domain of the covariate image"))
} else {
warning(paste(sum(offending), "out of", length(offending),
"covariate values discarded because",
ngettext(sum(offending), "it is NA", "they are NA")))
}
}
## remove data with invalid covariate values
ok <- !nbg & subQset
if(!(allok <- all(ok))) {
quadpoints <- quadpoints[ok]
covvalues <- covvalues[ok]
okdata <- ok[Z] # which original data points are retained
## Zok <- Z & ok # which original quadrature pts are retained as data pts
Z <- Z[ok] # which of the retained quad pts are data pts
wts <- wts[ok]
resvalues <- resvalues[if(type == "eem") okdata else ok]
}
if(any(is.infinite(covvalues) | is.nan(covvalues)))
stop("covariate contains Inf or NaN values")
## now determine the data points
datapoints <- quadpoints[Z]
## Quadrature points marked by covariate value
covq <- quadpoints %mark% as.numeric(covvalues)
if(type == "eem") {
## data points marked by residuals and covariate
res <- datapoints %mark% as.numeric(resvalues)
covres <- datapoints %mark% (as.numeric(covvalues)[Z])
} else {
## quadrature points marked by residuals and covariate
res <- quadpoints %mark% as.numeric(resvalues)
covres <- quadpoints %mark% as.numeric(covvalues)
}
## Clip to subwindow if needed
if(clip) {
covq <- covq[clipwindow]
res <- res[clipwindow]
covres <- covres[clipwindow]
clipquad <- inside.owin(quadpoints, w=clipwindow)
wts <- wts[ clipquad ]
Z <- Z[ clipquad ]
}
## handle internal data
saveworking <- isTRUE(internal$saveworking)
Fisher <- internal$Fisher # possibly from a larger model
covrange <- internal$covrange
## >>>>>>>>>>>> START ANALYSIS <<<<<<<<<<<<<<<<<<<<<<<<
## -----------------------------------------------------------------------
## (A) EMPIRICAL CUMULATIVE FUNCTION
## based on data points if type="eem", otherwise on quadrature points
## Reorder the data/quad points in order of increasing covariate value
## and then compute the cumulative sum of their residuals/marks
markscovres <- marks(covres)
o <- fave.order(markscovres)
covsort <- markscovres[o]
marksort <- marks(res)[o]
cummark <- cumsum(ifelse(is.na(marksort), 0, marksort))
if(anyDuplicated(covsort)) {
right <- !duplicated(covsort, fromLast=TRUE)
covsort <- covsort[right]
cummark <- cummark[right]
}
## we'll plot(covsort, cummark) in the cumulative case
## (B) THEORETICAL MEAN CUMULATIVE FUNCTION
## based on all quadrature points
## Range of covariate values
covqmarks <- marks(covq)
covrange <- covrange %orifnull% range(covqmarks, na.rm=TRUE)
if(diff(covrange) > 0) {
## Suitable breakpoints
cvalues <- seq(from=covrange[1L], to=covrange[2L], length.out=nx)
csmall <- cvalues[1L] - diff(cvalues[1:2])
cbreaks <- c(csmall, cvalues)
## cumulative area as function of covariate values
covclass <- cut(covqmarks, breaks=cbreaks)
increm <- tapply(wts, covclass, sum)
cumarea <- cumsum(ifelse(is.na(increm), 0, increm))
} else {
## Covariate is constant
cvalues <- covrange[1L]
covclass <- factor(rep(1, length(wts)))
cumarea <- increm <- sum(wts)
}
## compute theoretical mean (when model is true)
mean0 <- if(type == "eem") cumarea else numeric(length(cumarea))
## we'll plot(cvalues, mean0) in the cumulative case
## (A'),(B') DERIVATIVES OF (A) AND (B)
## Required if cumulative=FALSE
## Estimated by spline smoothing (with x values jittered)
if(!cumulative) {
## fit smoothing spline to (A)
ss <- do.call(smooth.spline,
append(list(covsort, cummark),
splineargs)
)
## estimate derivative of (A)
derivmark <- predict(ss, covsort, deriv=1)$y
## similarly for (B)
ss <- do.call(smooth.spline,
append(list(cvalues, mean0),
splineargs)
)
derivmean <- predict(ss, cvalues, deriv=1)$y
}
## -----------------------------------------------------------------------
## Store what will be plotted
if(cumulative) {
empirical <- data.frame(covariate=covsort, value=cummark)
theoretical <- data.frame(covariate=cvalues, mean=mean0)
} else {
empirical <- data.frame(covariate=covsort, value=derivmark)
theoretical <- data.frame(covariate=cvalues, mean=derivmean)
}
## ------------------------------------------------------------------------
## (C) STANDARD DEVIATION if desired
## (currently implemented only for Poisson)
## (currently implemented only for cumulative case)
if(plot.sd && !is.poisson(object))
warning(paste("standard deviation is calculated for Poisson model;",
"not valid for this model"))
if(plot.sd && cumulative) {
if(is.ppm(object)) {
## Fitted intensity at quadrature points
lambda <- fitted(object, type="trend", check=check)
if(!allok) lambda <- lambda[ok]
## Fisher information for coefficients
asymp <- vcov(object,what="internals")
Fisher <- Fisher %orifnull% asymp$fisher
## Local sufficient statistic at quadrature points
suff <- asymp$suff
if(!allok && !is.null(suff)) suff <- suff[ok, , drop=FALSE]
} else if(is.slrm(object)) {
## Fitted intensity at quadrature points
lambda <- predict(object, type="intensity")[quadpoints, drop=FALSE]
## Fisher information for coefficients
Fisher <- Fisher %orifnull% vcov(object, what="Fisher")
## Sufficient statistic at quadrature points
suff <- model.matrix(object)
if(!allok && !is.null(suff)) suff <- suff[ok, , drop=FALSE]
} else stop("object should be a ppm or slrm")
## Clip if required
if(clip) {
lambda <- lambda[clipquad]
if(!is.null(suff))
suff <- suff[clipquad, , drop=FALSE] ## suff is a matrix
}
## First term: integral of lambda^(2p+1)
switch(type,
pearson={
varI <- cumarea
},
raw={
## Compute sum of w*lambda for quadrature points in each interval
dvar <- tapply(wts * lambda, covclass, sum)
## tapply() returns NA when the table is empty
dvar[is.na(dvar)] <- 0
## Cumulate
varI <- cumsum(dvar)
},
inverse=, ## same as eem
eem={
## Compute sum of w/lambda for quadrature points in each interval
dvar <- tapply(wts / lambda, covclass, sum)
## tapply() returns NA when the table is empty
dvar[is.na(dvar)] <- 0
## Cumulate
varI <- cumsum(dvar)
})
if(!oldstyle) {
## check feasibility of variance calculations
if(length(Fisher) == 0 || length(suff) == 0) {
warning("Model has no fitted coefficients; using oldstyle=TRUE")
oldstyle <- TRUE
} else {
## variance-covariance matrix of coefficients
V <- try(solve(Fisher), silent=TRUE)
if(inherits(V, "try-error")) {
warning("Fisher information is singular; reverting to oldstyle=TRUE")
oldstyle <- TRUE
}
}
}
if(!oldstyle && any(dim(V) != ncol(suff))) {
#' drop rows and columns
nama <- colnames(suff)
V <- V[nama, nama, drop=FALSE]
}
working <- NULL
## Second term: B' V B
if(oldstyle) {
varII <- 0
if(saveworking)
working <- data.frame(varI=varI)
} else {
## lamp = lambda^(p + 1)
lamp <- switch(type,
raw = lambda,
pearson = sqrt(lambda),
inverse =,
eem = as.integer(lambda > 0))
## Compute sum of w * lamp * suff for quad points in intervals
Bcontrib <- as.vector(wts * lamp) * suff
dB <- matrix(, nrow=length(cumarea), ncol=ncol(Bcontrib),
dimnames=list(NULL, colnames(suff)))
for(j in seq_len(ncol(dB)))
dB[,j] <- tapply(Bcontrib[,j], covclass, sum, na.rm=TRUE)
## tapply() returns NA when the table is empty
dB[is.na(dB)] <- 0
## Cumulate columns
B <- apply(dB, 2, cumsum)
if(!is.matrix(B)) B <- matrix(B, nrow=1)
## compute B' V B for each i
varII <- quadform(B, V)
## was: varII <- diag(B %*% V %*% t(B))
if(saveworking)
working <- cbind(data.frame(varI=varI, varII=varII),
as.data.frame(B))
}
##
## variance of residuals
varR <- varI - varII
## trap numerical errors
nbg <- (varR < 0)
if(any(nbg)) {
ran <- range(varR)
varR[nbg] <- 0
relerr <- abs(ran[1L]/ran[2L])
nerr <- sum(nbg)
if(relerr > 1e-6) {
warning(paste(nerr, "negative",
ngettext(nerr, "value (", "values (min="),
signif(ran[1L], 4), ")",
"of residual variance reset to zero",
"(out of", length(varR), "values)"))
}
}
theoretical$sd <- sqrt(varR)
}
##
if(envelope) {
## compute envelopes by simulation
cl$plot.it <- FALSE
cl$envelope <- FALSE
cl$rv <- NULL
if(is.null(Xsim))
Xsim <- simulate(object, nsim=nsim, progress=verbose)
values <- NULL
if(verbose) {
cat("Processing.. ")
state <- list()
}
for(i in seq_len(nsim)) {
## evaluate lurking variable plot for simulated pattern
cl$object <- update(object, Xsim[[i]])
result.i <- eval(cl, clenv)
## interpolate empirical values onto common sequence
f.i <- with(result.i$empirical,
approxfun(covariate, value, rule=2))
val.i <- f.i(theoretical$covariate)
values <- cbind(values, val.i)
if(verbose) state <- progressreport(i, nsim, state=state)
}
if(verbose) cat("Done.\n")
hilo <- if(nrank == 1) apply(values, 1, range) else
apply(values, 1, orderstats, k=c(nrank, nsim-nrank+1))
theoretical$upper <- hilo[1L,]
theoretical$lower <- hilo[2L,]
}
## ---------------- RETURN COORDINATES ----------------------------
stuff <- list(empirical=empirical,
theoretical=theoretical)
attr(stuff, "info") <- list(typename=typename,
cumulative=cumulative,
covrange=covrange,
covname=covname,
oldstyle=oldstyle)
if(saveworking) attr(stuff, "working") <- working
class(stuff) <- "lurk"
return(stuff)
}
# plot a lurk object
plot.lurk <- function(x, ..., shade="grey") {
xplus <- append(x, attr(x, "info"))
with(xplus, {
## work out plot range
mr <- range(0, empirical$value, theoretical$mean, na.rm=TRUE)
if(!is.null(theoretical$sd))
mr <- range(mr,
theoretical$mean + 2 * theoretical$sd,
theoretical$mean - 2 * theoretical$sd,
na.rm=TRUE)
if(!is.null(theoretical$upper))
mr <- range(mr, theoretical$upper, theoretical$lower, na.rm=TRUE)
## start plot
vname <- paste(if(cumulative)"cumulative" else "marginal", typename)
do.call(plot,
resolve.defaults(
list(covrange, mr),
list(type="n"),
list(...),
list(xlab=covname, ylab=vname)))
## Envelopes
if(!is.null(theoretical$upper)) {
Upper <- theoretical$upper
Lower <- theoretical$lower
} else if(!is.null(theoretical$sd)) {
Upper <- with(theoretical, mean+2*sd)
Lower <- with(theoretical, mean-2*sd)
} else Upper <- Lower <- NULL
if(!is.null(Upper) && !is.null(Lower)) {
xx <- theoretical$covariate
if(!is.null(shade)) {
## shaded envelope region
shadecol <- if(is.colour(shade)) shade else "grey"
xx <- c(xx, rev(xx))
yy <- c(Upper, rev(Lower))
dont.complain.about(yy)
do.call.matched(polygon,
resolve.defaults(list(x=quote(xx), y=quote(yy)),
list(...),
list(border=shadecol, col=shadecol)))
} else {
do.call(lines,
resolve.defaults(
list(x = quote(xx), y=quote(Upper)),
list(...),
list(lty=3)))
do.call(lines,
resolve.defaults(
list(x = quote(xx), y = quote(Lower)),
list(...),
list(lty=3)))
}
}
## Empirical
lines(value ~ covariate, empirical, ...)
## Theoretical mean
do.call(lines,
resolve.defaults(
list(mean ~ covariate, quote(theoretical)),
list(...),
list(lty=2)))
})
return(invisible(NULL))
}
#' print a lurk object
print.lurk <- function(x, ...) {
splat("Lurking variable plot (object of class 'lurk')")
info <- attr(x, "info")
with(info, {
splat("Residual type: ", typename)
splat("Covariate on horizontal axis: ", covname)
splat("Range of covariate values: ", prange(covrange))
splat(if(cumulative) "Cumulative" else "Non-cumulative", "plot")
})
has.bands <- !is.null(x$theoretical$upper)
has.sd <- !is.null(x$theoretical$sd)
if(!has.bands && !has.sd) {
splat("No confidence bands computed")
} else {
splat("Includes",
if(has.sd) "standard deviation for" else NULL,
"confidence bands")
if(!is.null(info$oldstyle))
splat("Variance calculation:",
if(info$oldstyle) "old" else "new",
"style")
}
return(invisible(NULL))
}
|