1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
|
#
# predict.ppm.S
#
# $Revision: 1.114 $ $Date: 2021/12/29 03:02:47 $
#
# predict.ppm()
# From fitted model obtained by ppm(),
# evaluate the fitted trend or conditional intensity
# at a grid/list of other locations
#
#
# -------------------------------------------------------------------
predict.ppm <- local({
##
## extract undocumented/outdated arguments, and trap others
##
xtract <- function(..., newdata=NULL, sumobj=NULL, E=NULL, total=NULL,
getoutofjail=FALSE) {
if(!is.null(newdata))
warning(paste("The use of the argument", sQuote("newdata"),
"is out-of-date. See help(predict.ppm)"))
if(!is.null(total))
message(paste("The use of the argument", sQuote("total"),
"is out-of-date. See help(predict.ppm)"))
trap.extra.arguments(..., .Context="In predict.ppm")
return(list(sumobj=sumobj, E=E, total=total, getoutofjail=getoutofjail))
}
##
## confidence/prediction intervals for number of points
predconfPois <- function(region, object, level,
what=c("estimate", "se",
"confidence", "prediction")) {
what <- match.arg(what)
stopifnot(0 < level && level < 1)
lam <- predict(object, window=region)
mu.hat <- integral.im(lam)
if(what == "estimate") return(mu.hat)
mo <- model.images(object, W=as.owin(lam))
ZL <- unlist(lapply(mo,
function(z, w) integral.im(eval.im(z * w)),
w = lam))
ZL <- matrix(ZL, nrow=1)
var.muhat <- as.numeric(ZL %*% vcov(object) %*% t(ZL))
sd.muhat <- sqrt(var.muhat)
if(what == "se") return(sd.muhat)
alpha2 <- (1-level)/2
pp <- sort(c(alpha2, 1-alpha2))
out <- switch(what,
confidence = mu.hat + qnorm(pp) * sd.muhat,
prediction = qmixpois(pp, mu.hat, sd.muhat, I))
names(out) <- paste0(signif(100 * pp, 3), "%")
out
}
typepublic <- c("trend", "cif", "intensity", "count")
typeaccept <- c(typepublic, "lambda", "se", "SE", "covariates")
typeuse <- c(typepublic, "cif", "se", "se", "covariates")
predict.ppm <- function(object, window=NULL, ngrid=NULL, locations=NULL,
covariates=NULL,
type=c("trend", "cif", "intensity", "count"),
se=FALSE,
interval=c("none", "confidence", "prediction"),
level = 0.95,
X=data.ppm(object),
correction,
ignore.hardcore=FALSE,
...,
dimyx=NULL, eps=NULL,
new.coef=NULL, check=TRUE, repair=TRUE) {
interval <- match.arg(interval)
## extract undocumented arguments
xarg <- xtract(...)
sumobj <- xarg$sumobj
E <- xarg$E
total <- xarg$total
getoutofjail <- xarg$getoutofjail
## match 'type' argument including 'legacy' options
seonly <- FALSE
if(missing(type)) type <- type[1] else {
if(length(type) > 1) stop("Argument 'type' should be a single value")
mt <- pmatch(type, typeaccept)
if(is.na(mt)) stop("Argument 'type' should be one of",
commasep(sQuote(typepublic), " or "))
type <- typeuse[mt]
if(type == "se") {
if(!getoutofjail)
message(paste("Outdated syntax:",
"type='se' should be replaced by se=TRUE;",
"then the standard error is predict(...)$se"))
type <- "trend"
se <- TRUE
seonly <- TRUE
}
}
if(!is.null(total)) {
message("Outdated argument 'total': use 'window' and set type='count'")
type <- "count"
if(!is.logical(total))
window <- if(is.tess(total)) total else as.owin(total)
}
##
model <- object
verifyclass(model, "ppm")
##
if(check && damaged.ppm(object)) {
if(!repair)
stop("object format corrupted; try update(object, use.internal=TRUE)")
message("object format corrupted; repairing it.")
object <- update(object, use.internal=TRUE)
}
if(missing(correction) || is.null(correction))
correction <- object$correction
fitcoef <- coef(object)
if(!is.null(new.coef)) {
## validate coefs
if(length(new.coef) != length(fitcoef))
stop(paste("Argument new.coef has wrong length",
length(new.coef), ": should be", length(fitcoef)))
coeffs <- new.coef
} else {
coeffs <- fitcoef
}
## find out what kind of model it is
if(is.null(sumobj))
sumobj <- summary(model, quick="entries") # undocumented hack!
# stationary <- sumobj$stationary
poisson <- sumobj$poisson
marked <- sumobj$marked
multitype <- sumobj$multitype
notrend <- sumobj$no.trend
changedcoef <- sumobj$changedcoef || !is.null(new.coef)
trivial <- poisson && notrend
need.covariates <- sumobj$uses.covars
covnames.needed <- sumobj$covars.used
if(sumobj$antiquated)
warning("The model was fitted by an out-of-date version of spatstat")
## determine mark space
if(marked) {
if(!multitype)
stop("Prediction not yet implemented for general marked point processes")
else
types <- levels(marks(sumobj$entries$data))
}
## For Poisson models cif=intensity=trend
if(poisson && type %in% c("cif", "intensity"))
type <- "trend"
## ............. trap un-implemented cases ...................
## Standard errors not yet available for cif, intensity
if(se && type %in% c("cif", "intensity"))
stop(paste("Standard error for", type, "is not yet implemented"),
call.=FALSE)
## Intervals are only available for unmarked Poisson models
if(type == "count" && interval != "none" && (marked || !poisson)) {
stop(paste0(interval, " intervals for counts are only implemented for",
if(marked) " unmarked" else "",
if(!poisson) " Poisson",
" models"),
call.=FALSE)
}
if(interval == "prediction" && type != "count")
stop("Prediction intervals are only available for type='count'",
call.=FALSE)
if(interval == "confidence" && type %in% c("intensity", "cif"))
stop(paste("Confidence intervals are not yet available for", type),
call.=FALSE)
estimatename <- if(interval == "none") "estimate" else interval
## ............. start computing .............................
## Total count in a region
if(type == "count") {
## point or interval estimate, optionally with SE
if(is.null(window)) {
## domain of the original data
if(!seonly) est <- predconfPois(NULL, model, level, estimatename)
if(se) sem <- predconfPois(NULL, model, level, "se")
} else if(is.tess(window)) {
## quadrats
tilz <- tiles(window)
if(!seonly) {
est <- lapply(tilz, predconfPois,
object=model, level=level, what=estimatename)
est <- switch(interval,
none = unlist(est),
confidence =,
prediction = t(simplify2array(est)))
}
if(se) sem <- sapply(tilz, predconfPois,
object=model, level=level, what="se")
} else {
## window
if(!seonly) est <- predconfPois(window, model, level, estimatename)
if(se) sem <- predconfPois(window, model, level, "se")
}
if(!se) return(est)
if(seonly) return(sem)
result <- list(est, sem)
names(result) <- c(estimatename, "se")
return(result)
}
## ..... Predict a spatial function .......
if(interval != "none") {
## Prepare for confidence interval
alpha2 <- (1-level)/2
pp <- sort(c(alpha2, 1-alpha2))
ci.names <- paste0(signif(100 * pp, 3), "%")
ci.q <- qnorm(pp)
}
## determine what kind of output is required:
## (arguments present) (output)
## window, ngrid -> image
## locations (mask) -> image
## locations (image) -> image
## locations (rectangle) -> treat locations as 'window'
## locations (polygonal) -> treat locations as 'window'
## locations (other) -> data frame
##
if(is.im(locations))
locations <- as.owin(locations)
if(is.null(window) && is.owin(locations) && !is.mask(locations)) {
window <- locations
locations <- NULL
}
#' incompatible:
if(!is.null(locations)) {
#' other arguments are incompatible
offending <- c(!is.null(ngrid), !is.null(dimyx), !is.null(eps))
if(any(offending)) {
offenders <- c("grid", "dimyx", "eps")[offending]
nbad <- sum(offending)
stop(paste(ngettext(nbad, "The argument", "The arguments"),
commasep(sQuote(offenders)),
ngettext(nbad, "is", "are"),
"incompatible with", sQuote("locations")),
call.=FALSE)
}
}
#' equivalent:
if(!is.null(ngrid) && !is.null(dimyx))
warning(paste("The arguments", sQuote("ngrid"), "and", sQuote("dimyx"),
"are equivalent: only one should be given"),
call.=FALSE)
ngrid <- ngrid %orifnull% dimyx
if(is.null(ngrid) && is.null(locations))
## use regular grid
ngrid <- rev(spatstat.options("npixel"))
want.image <- is.null(locations) || is.mask(locations)
make.grid <- !is.null(ngrid)
## ############## Determine prediction points #####################
if(!want.image) {
## (A) list of (x,y) coordinates given by `locations'
xpredict <- locations$x
ypredict <- locations$y
if(is.null(xpredict) || is.null(ypredict)) {
xy <- xy.coords(locations)
xpredict <- xy$x
xpredict <- xy$y
}
if(is.null(xpredict) || is.null(ypredict))
stop(paste("Don't know how to extract x,y coordinates from",
sQuote("locations")))
## marks if required
if(marked) {
## extract marks from data frame `locations'
mpredict <- locations$marks
if(is.null(mpredict))
stop(paste("The argument", sQuote("locations"),
"does not contain a column of marks",
"(required since the fitted model",
"is a marked point process)"))
if(is.factor(mpredict)) {
## verify mark levels match those in model
if(!isTRUE(all.equal(levels(mpredict), types))) {
if(all(levels(mpredict) %in% types))
mpredict <- factor(mpredict, levels=types)
else
stop(paste("The marks in", sQuote("locations"),
"do not have the same levels as",
"the marks in the model"))
}
} else {
## coerce to factor if possible
if(all(mpredict %in% types))
mpredict <- factor(mpredict, levels=types)
else
stop(paste("The marks in", sQuote("locations"),
"do not have the same values as the marks in the model"))
}
}
} else {
## (B) pixel grid of points
if(!make.grid)
## (B)(i) The grid is given in `locations'
masque <- locations
else {
## (B)(ii) We have to make the grid ourselves
## Validate ngrid
if(!is.null(ngrid)) {
if(!is.numeric(ngrid))
stop("ngrid should be a numeric vector")
ngrid <- ensure2vector(ngrid)
}
if(is.null(window))
window <- sumobj$entries$data$window
masque <- as.mask(window, dimyx=ngrid, eps=eps)
}
## Hack -----------------------------------------------
## gam with lo() will not allow extrapolation beyond the range of x,y
## values actually used for the fit. Check this:
tums <- termsinformula(model$trend)
if(any(
tums == "lo(x)" |
tums == "lo(y)" |
tums == "lo(x,y)" |
tums == "lo(y,x)")
) {
## determine range of x,y used for fit
gg <- model$internal$glmdata
gxr <- range(gg$x[gg$SUBSET])
gyr <- range(gg$y[gg$SUBSET])
## trim window to this range
masque <- intersect.owin(masque, owin(gxr, gyr))
}
## ------------------------------------ End Hack
##
## Finally, determine x and y vectors for grid
rxy <- rasterxy.mask(masque, drop=TRUE)
xpredict <- rxy$x
ypredict <- rxy$y
}
## ################ CREATE DATA FRAME ##########################
## ... to be passed to predict.glm()
##
## First the x, y coordinates
if(!marked)
newdata <- data.frame(x=xpredict, y=ypredict)
else if(!want.image)
newdata <- data.frame(x=xpredict, y=ypredict, marks=mpredict)
else {
## replicate
nt <- length(types)
np <- length(xpredict)
xpredict <- rep.int(xpredict,nt)
ypredict <- rep.int(ypredict,nt)
mpredict <- rep.int(types, rep.int(np, nt))
mpredict <- factor(mpredict, levels=types)
newdata <- data.frame(x = xpredict,
y = ypredict,
marks=mpredict)
}
## ## Next the external covariates, if any
##
if(need.covariates) {
if(is.null(covariates)) {
## Extract covariates from fitted model object
## They have to be images.
oldcov <- model$covariates
if(is.null(oldcov))
stop("External covariates are required, and are not available")
if(is.data.frame(oldcov))
stop(paste("External covariates are required.",
"Prediction is not possible at new locations"))
covariates <- oldcov
}
## restrict to covariates actually required for formula
covariates <- if(is.data.frame(covariates)) {
covariates[,covnames.needed, drop=FALSE]
} else covariates[covnames.needed]
covfunargs <- model$covfunargs
covariates.df <-
mpl.get.covariates(covariates,
list(x=xpredict, y=ypredict),
"prediction points",
covfunargs)
newdata <- cbind(newdata, covariates.df)
}
## ###### Set up prediction variables ################################
##
## Provide SUBSET variable
##
if(is.null(newdata$SUBSET))
newdata$SUBSET <- rep.int(TRUE, nrow(newdata))
##
## Dig out information used in Berman-Turner device
## Vnames: the names for the ``interaction variables''
## glmdata: the data frame used for the glm fit
## glmfit: the fitted glm object
##
if(!trivial) {
Vnames <- model$internal$Vnames
vnameprefix <- model$internal$vnameprefix
glmdata <- getglmdata(model)
glmfit <- getglmfit(model)
if(object$method=="logi")
newdata$.logi.B <- rep(glmdata$.logi.B[1], nrow(newdata))
}
## Undocumented secret exit
if(type == "covariates")
return(list(newdata=newdata, mask=if(want.image) masque else NULL))
## ########## COMPUTE PREDICTION ##############################
##
## Compute the predicted value z[i] for each row of 'newdata'
## Store in a vector z and reshape it later
##
##
## #############################################################
needSE <- se || (interval != "none")
attribeauts <- list()
if(trivial) {
## ########### UNIFORM POISSON PROCESS #####################
lambda <- exp(coeffs[[1]])
if(needSE) {
npts <- nobs(model)
se.lambda <- lambda/sqrt(npts)
}
switch(interval,
none = {
z <- rep.int(lambda, nrow(newdata))
},
confidence = {
z <- matrix(lambda + se.lambda * ci.q,
byrow=TRUE,
nrow=nrow(newdata), ncol=2,
dimnames=list(NULL, ci.names))
},
stop("Internal error: unreached"))
if(se)
zse <- rep.int(se.lambda, nrow(newdata))
## ##############################################################
} else if((type %in% c("trend", "intensity")) || poisson) {
##
## ########## COMPUTE TREND ###################################
##
## set explanatory variables to zero
##
zeroes <- numeric(nrow(newdata))
for(vn in Vnames)
newdata[[vn]] <- zeroes
##
## predict trend
##
z <- lambda <- GLMpredict(glmfit, newdata, coeffs,
changecoef=changedcoef)
##
if(type == "intensity")
z <- PoisSaddle(z, fitin(model))
##
if(needSE) {
## extract variance-covariance matrix of parameters
vc <- vcov(model)
## compute model matrix
fmla <- rhs.of.formula(formula(glmfit))
# mf <- model.frame(fmla, newdata, ..., na.action=na.pass)
# mm <- model.matrix(fmla, mf, ..., na.action=na.pass)
mf <- model.frame(fmla, newdata, na.action=na.pass)
mm <- model.matrix(fmla, mf, na.action=na.pass)
if(nrow(mm) != nrow(newdata))
stop("Internal error: row mismatch in SE calculation")
## compute relative variance = diagonal of quadratic form
if(ncol(mm) != ncol(vc))
stop("Internal error: column mismatch in SE calculation")
vv <- quadform(mm, vc)
## standard error
SE <- lambda * sqrt(vv)
if(se)
zse <- SE
if(interval == "confidence") {
z <- lambda + outer(SE, ci.q, "*")
colnames(z) <- ci.names
}
}
## ############################################################
} else if(type == "cif" || type =="lambda") {
## ####### COMPUTE FITTED CONDITIONAL INTENSITY ################
##
## set up arguments
inter <- model$interaction
if(!missing(X)) stopifnot(is.ppp(X))
W <- as.owin(data.ppm(model))
U <- ppp(newdata$x, y=newdata$y, window=W, check=FALSE)
if(marked)
marks(U) <- newdata$marks
## determine which prediction points are data points
if(is.null(E))
E <- equalpairs(U, X, marked)
## evaluate interaction
Vnew <- evalInteraction(X, U, E, inter, correction=correction,
splitInf=ignore.hardcore,
check=check)
if(!ignore.hardcore) {
## Negative infinite values of potential signify cif = zero
cif.equals.zero <- matrowany(Vnew == -Inf)
} else {
## returned as attribute, unless vacuous
cif.equals.zero <- attr(Vnew, "-Inf") %orifnull% logical(nrow(Vnew))
}
attribeauts <- c(attribeauts, list(isZero=cif.equals.zero))
## Insert the potential into the relevant column(s) of `newdata'
if(ncol(Vnew) == 1) {
## Potential is real valued (Vnew is a column vector)
## Assign values to a column of the same name in newdata
newdata[[Vnames]] <- as.vector(Vnew)
##
} else if(is.null(avail <- colnames(Vnew))) {
## Potential is vector-valued (Vnew is a matrix)
## with unnamed components.
## Assign the components, in order of their appearance,
## to the columns of newdata labelled Vnames[1], Vnames[2],...
for(i in seq_along(Vnames))
newdata[[Vnames[i] ]] <- Vnew[,i]
##
} else {
## Potential is vector-valued (Vnew is a matrix)
## with named components.
## Match variables by name
if(all(Vnames %in% avail)) {
for(vn in Vnames)
newdata[[ vn ]] <- Vnew[ , vn]
} else if(all(Vnames %in% (Pavail <- paste0(vnameprefix, avail)))) {
for(vn in Vnames)
newdata[[ vn ]] <- Vnew[ , match(vn, Pavail)]
} else
stop(paste(
"Internal error: unable to match names",
"of available interaction terms",
commasep(sQuote(avail)),
"to required interaction terms",
commasep(sQuote(Vnames))
), call.=FALSE)
}
## invoke predict.glm or compute prediction
z <- GLMpredict(glmfit, newdata, coeffs,
changecoef=changedcoef)
## reset to zero if potential was zero
if(!ignore.hardcore && any(cif.equals.zero))
z[cif.equals.zero] <- 0
## ###############################################################
} else
stop(paste("Unrecognised type", sQuote(type)))
## ###############################################################
##
## reshape the result
##
if(!want.image) {
if(!se) {
z <- as.vector(z)
attributes(z) <- c(attributes(z), attribeauts)
out <- z
} else if(seonly) {
out <- as.vector(zse)
} else {
z <- as.vector(z)
attributes(z) <- c(attributes(z), attribeauts)
out <- list(z, as.vector(zse))
names(out) <- c(estimatename, "se")
}
}
else {
## make an image of the right shape and value
imago <- as.im(masque, value=1.0)
if(!marked && interval=="none") {
## single image
if(!se) {
out <- imago
## set entries
out[] <- z
} else if(seonly) {
out <- imago
out[] <- zse
} else {
est <- std <- imago
est[] <- z
std[] <- zse
out <- list(est, std)
names(out) <- c(estimatename, "se")
}
} else if(interval != "none") {
## list of 2 images for CI
if(!seonly) {
hi <- lo <- imago
hi[] <- z[,1]
lo[] <- z[,2]
est <- solist(hi, lo)
names(est) <- ci.names
}
if(se) {
std <- imago
std[] <- zse
}
if(!se) {
out <- est
} else if(seonly) {
out <- std
} else {
out <- list(est, std)
names(out) <- c(estimatename, "se")
}
} else {
## list of images, one for each level of marks
out <- list()
for(i in seq_along(types)) {
outi <- imago
## set entries
outi[] <- z[newdata$marks == types[i]]
out[[i]] <- outi
}
out <- as.solist(out)
names(out) <- as.character(types)
}
}
##
## FINISHED
##
return(out)
}
predict.ppm
})
####################################################################
#
# compute pointwise uncertainty of fitted intensity
#
model.se.image <- function(fit, W=as.owin(fit), ..., what="sd") {
if(!is.poisson.ppm(fit))
stop("Only implemented for Poisson point process models", call.=FALSE)
what <- pickoption("option", what,
c(sd="sd", var="var", cv="cv", CV="cv", ce="ce", CE="ce"))
W <- as.mask(as.owin(W))
# variance-covariance matrix of coefficients
vc <- vcov(fit)
np <- dim(vc)[1]
# extract sufficient statistic for each coefficient
mm <- model.images(fit, W, ...)
# compute fitted intensity
lam <- predict(fit, locations=W)
# initialise resulting image
U <- as.im(W)
U[] <- 0
# compute pointwise matrix product, assuming vc is symmetric
for(i in 1:np) {
Si <- mm[[i]]
aii <- vc[i,i]
U <- eval.im(U + aii * Si^2)
if(i > 1) {
for(j in 1:(i-1)) {
Sj <- mm[[j]]
aij <- vc[i,j]
twoaij <- 2 * aij
U <- eval.im(U + twoaij * Si * Sj)
}
}
}
# the matrix product is the relative variance (CV)
if(what=="cv")
return(U)
# relative sd
if(what=="ce") {
U <- eval.im(sqrt(U))
return(U)
}
# multiply by squared intensity to obtain variance
U <- eval.im(U * lam^2)
# variance
if(what=="var")
return(U)
# compute SD and return
U <- eval.im(sqrt(U))
return(U)
}
GLMpredict <- function(fit, data, coefs, changecoef=TRUE,
type=c("response", "link")) {
type <- match.arg(type)
if(!changecoef && all(is.finite(unlist(coefs)))) {
answer <- predict(fit, newdata=data, type=type)
} else {
if(inherits(fit, "gam"))
stop("This calculation is not supported for GAM fits", call.=FALSE)
# do it by hand
fmla <- formula(fit)
data$.mpl.Y <- 1
fram <- model.frame(fmla, data=data, na.action=NULL)
# linear predictor
mm <- model.matrix(fmla, data=fram)
# ensure all required coefficients are present
coefs <- fill.coefs(coefs, colnames(mm))
ok <- is.finite(coefs)
#
if(all(ok)) {
eta <- as.vector(mm %*% coefs)
} else {
#' ensure 0 * anything = 0
eta <- as.vector(mm[ , ok, drop=FALSE] %*% coefs[ok])
for(j in which(!ok)) {
mmj <- mm[, j]
nonzero <- is.na(mmj) | (mmj != 0)
if(any(nonzero))
eta[nonzero] <- eta[nonzero] + mmj[nonzero] * coefs[j]
}
}
# offset
mo <- model.offset(fram)
if(!is.null(mo)) {
if(is.matrix(mo))
mo <- apply(mo, 1, sum)
eta <- mo + eta
}
switch(type,
link = {
answer <- eta
},
response = {
linkinv <- family(fit)$linkinv
answer <- linkinv(eta)
})
}
# Convert from fitted logistic prob. to lambda for logistic fit
if(type == "response" && family(fit)$family=="binomial")
answer <- fit$data$.logi.B[1] * answer/(1-answer)
return(answer)
}
# An 'equalpairs' matrix E is needed in the ppm class
# to determine which quadrature points and data points are identical
# (not just which quadrature points are data points).
# It is a two-column matrix specifying all the identical pairs.
# The first column gives the index of a data point (in the data pattern X)
# and the second column gives the corresponding index in U.
# The following function determines the equal pair information
# from the coordinates (and marks) of U and X alone;
# it should be used only if we can't figure out this information otherwise.
equalpairs <- function(U, X, marked=FALSE) {
nn <- nncross(U, X)
coincides <- (nn$dist == 0)
Xind <- nn$which[coincides]
Uind <- which(coincides)
if(marked) {
samemarks <- (marks(X)[Xind] == marks(U)[Uind])
Xind <- Xind[samemarks]
Uind <- Uind[samemarks]
}
return(cbind(Xind, Uind))
}
fill.coefs <- function(coefs, required) {
# 'coefs' should contain all the 'required' values
coefsname <- deparse(substitute(coefs))
nama <- names(coefs)
if(is.null(nama)) {
#' names cannot be matched
if(length(coefs) != length(required))
stop(paste("The unnamed argument", sQuote(coefsname),
"has", length(coefs), "entries, but",
length(required), "are required"),
call.=FALSE)
# blithely assume they match 1-1
names(coefs) <- required
return(coefs)
}
stopifnot(is.character(required))
if(identical(nama, required)) return(coefs)
inject <- match(nama, required)
if(any(notneeded <- is.na(inject))) {
warning(paste("Internal glitch: some coefficients were not required:",
commasep(sQuote(nama[notneeded]))),
call.=FALSE)
coefs <- coefs[!notneeded]
nama <- names(coefs)
inject <- match(nama, required)
}
y <- numeric(length(required))
names(y) <- required
y[inject] <- coefs
return(y)
}
|