1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
#
# predictmppm.R
#
# $Revision: 1.18 $ $Date: 2022/04/26 07:25:57 $
#
#
# -------------------------------------------------------------------
predict.mppm <- local({
predict.mppm <- function(object, ..., newdata=NULL, type=c("trend", "cif"),
ngrid=40, locations=NULL, verbose=FALSE) {
##
## 'object' is the output of mppm()
##
model <- object
verifyclass(model, "mppm")
##
isMulti <- is.multitype(model)
modelsumry <- summary(model)
depends.on.row <- modelsumry$depends.on.row
fixedinteraction <- modelsumry$ikind$fixedinteraction
ndata.old <- model$npat
##
## ......................................................................
if(verbose)
cat("Inspecting arguments...")
## ......................................................................
##
## hidden arguments
selfcheck <- resolve.defaults(list(...), list(selfcheck=FALSE))$selfcheck
##
## Argument 'type'
##
type <- pickoption("type", type, c(trend="trend",
lambda="cif",
cif="cif"), multi=TRUE)
want.trend <- "trend" %in% type
want.cif <- "cif" %in% type
##
## Argument 'newdata'
##
use.olddata <- is.null(newdata)
if(use.olddata) {
newdata <- model$data
newdataname <- "Original data"
ndata.new <- ndata.old
new.id <- NULL
} else {
stopifnot(is.data.frame(newdata) || is.hyperframe(newdata))
newdataname <- sQuote("newdata")
ndata.new <- nrow(newdata)
new.id <- NULL
if(depends.on.row) {
#' require row serial numbers 'id'
new.id <- newdata$id
if(is.null(new.id)) {
#' no serial numbers given
#' implicitly use the old serial numbers
if(ndata.new != ndata.old)
stop(paste("'newdata' must have the same number of rows",
"as the original 'data' argument",
paren(paste("namely", ndata.old)),
"because the model depends on the row index"),
call.=FALSE)
} else {
#' serial numbers given
#' validate them
if(!is.factor(new.id) && !is.integer(new.id))
stop("newdata$id should be a factor or integer vector", call.=FALSE)
if(is.integer(new.id)) {
new.id <- factor(new.id, levels=1:ndata.old)
} else if(!identical(levels(new.id), as.character(1:ndata.old))) {
stop(paste0("Levels of newdata$id must be 1:", ndata.old),
call.=FALSE)
}
}
}
}
##
## Argument 'locations'
##
if(is.hyperframe(locations))
locations <- locations[,1,drop=TRUE]
if(is.list(locations))
cls <- unique(sapply(locations, class))
loctype <-
if(is.null(locations)) "null" else
if(is.data.frame(locations)) "data.frame" else
if(is.list(locations)) {
if(any(c("ppp", "quad") %in% cls)) "points"
else if("owin" %in% cls) {
if(all(sapply(locations, is.mask)))
"mask"
else
"window"
} else "unknown"
} else "unknown"
## ......................................................................
if(verbose)
cat("done.\nDeciding type of locations for prediction...")
## ......................................................................
need.grid <- switch(loctype,
null =TRUE,
data.frame=FALSE,
points =FALSE,
mask =FALSE,
window =TRUE,
unknown =stop("Unrecognised format for locations"))
make.image <- need.grid || (loctype == "mask")
##
locationvars <- c("x", "y", "id", if(isMulti) "marks" else NULL)
##
##
if(need.grid) {
## prediction on a grid is required
if(is.data.frame(newdata))
stop(paste("Cannot predict model on a grid;", newdataname,
"are a data frame"))
} else {
## prediction at `locations' is required
if(is.hyperframe(newdata)) {
## check consistency between locations and newdata
nloc <- length(locations)
if(nloc != ndata.new)
stop(paste("Length of argument", sQuote("locations"), paren(nloc),
"does not match number of rows in",
newdataname, paren(ndata.new)))
} else {
## newdata is a data frame
if(!is.data.frame(locations))
stop(paste(newdataname,
"is a data frame; locations must be a data frame"))
else {
stopifnot(nrow(locations) == nrow(newdata))
dup <- names(newdata) %in% names(locations)
if(any(dup))
for(nam in names(newdata)[dup])
if(!isTRUE(all.equal(newdata[,nam], locations[,nam])))
stop(paste("The data frames newdata and locations",
"both have a column called", sQuote(nam),
"but the entries differ"))
nbg <- !(locationvars %in% c(names(newdata),names(locations)))
if(any(nbg))
stop(paste(ngettext(sum(nbg), "Variable", "Variables"),
commasep(locationvars[nbg]),
"not provided"))
## merge the two data frames
newdata <- cbind(newdata[,!dup], locations)
locations <- NULL
}
}
}
## ......................................................................
if(verbose)
cat("done.\nExtracting details of point process model...")
## ......................................................................
## extract fitted glm/gam/glmm object
FIT <- model$Fit$FIT
MOADF <- model$Fit$moadf
## extract names of interaction variables
Vnamelist <- model$Fit$Vnamelist
vnames <- unlist(Vnamelist)
## determine which interaction is applicable on each row
interactions <- model$Inter$interaction
hyperinter <- is.hyperframe(interactions)
ninter <- if(hyperinter) nrow(interactions) else 1L
if(hyperinter && ninter > 1) {
if(fixedinteraction) {
interactions <- interactions[1L, ]
} else {
## interaction depends on row
if(!is.null(new.id)) {
## row sequence specified; extract the relevant rows
interactions <- interactions[as.integer(new.id), ]
} else {
## rows of newdata implicitly correspond to rows of original data
if(ninter != ndata.new)
stop(paste("Number of rows of newdata", paren(ndata.new),
"does not match number of interactions in model",
paren(ninter)))
}
}
}
## extract possible types, if model is multitype
if(isMulti) {
levlist <- unique(lapply(data.mppm(model), levelsofmarks))
if(length(levlist) > 1)
stop("Internal error: the different point patterns have inconsistent marks",
call.=FALSE)
marklevels <- levlist[[1L]]
} else marklevels <- list(NULL) # sic
## ......................................................................
if(verbose) {
cat("done.\n")
if(use.olddata) splat("Using original hyperframe of data") else
splat("newdata is a", if(is.data.frame(newdata)) "data frame" else "hyperframe")
}
## ......................................................................
##
if(is.data.frame(newdata)) {
##
## newdata is a DATA FRAME
##
if(need.grid)
stop("Cannot predict model on a grid; newdata is a data frame")
if(verbose)
cat("Computing prediction..")
## use newdata as covariates
nbg <- !(locationvars %in% names(newdata))
if(any(nbg))
stop(paste(ngettext(sum(nbg), "variable", "variables"),
commasep(locationvars[nbg]),
"not provided"))
## create output data frame
answer <- as.data.frame(matrix(, nrow=nrow(newdata), ncol=0),
row.names=row.names(newdata))
if(want.trend) {
## add interaction components, set to zero (if any)
if(length(vnames) > 0)
newdata[, vnames] <- 0
## compute fitted values
answer$trend <- Predict(FIT, newdata=newdata, type="response")
}
if(want.cif) {
if(is.poisson(object)) {
## cif = trend
answer$cif <- if(want.trend) answer$trend else
Predict(FIT, newdata=newdata, type="response")
} else {
warning("Computation of the cif is not yet implemented when newdata is a data frame")
## split data frame by 'id'
## compute interaction components using existing point patterns
## compute fitted values
}
}
if(verbose) cat("done.\n")
return(answer)
}
## ......................................................................
## newdata is a HYPERFRAME
##
if(verbose)
cat("Building data for prediction...")
sumry.new <- summary(newdata)
ndata.new <- sumry.new$ncases
## name of response point pattern in model
Yname <- model$Info$Yname
##
## Determine response point patterns if known.
## Extract from newdata if available
## Otherwise from the original data if appropriate
if(verbose)
cat("(responses)...")
Y <- if(Yname %in% sumry.new$col.names)
newdata[, Yname, drop=TRUE, strip=FALSE]
else if(ndata.new == ndata.old)
data[, Yname, drop=TRUE, strip=FALSE]
else NULL
##
if(want.cif && is.null(Y))
stop(paste("Cannot compute cif:",
"newdata does not contain column", dQuote(Yname),
"of response point patterns"))
##
## Determine windows for prediction
if(verbose)
cat("(windows)...")
Wins <- if(!need.grid)
lapply(locations, as.owin, fatal=FALSE)
else if(!is.null(Y))
lapply(Y, as.owin, fatal=FALSE)
else NULL
if(is.null(Wins) || any(sapply(Wins, is.null)))
stop("Cannot determine windows where predictions should be made")
##
##
if(is.null(Y)) {
## only want trend; empty patterns will do
Y <- lapply(Wins, emptypattern)
}
## ensure Y contains data points only
if(is.quad(Y[[1]]))
Y <- lapply(Y, getElement, name="data")
## Determine locations for prediction
if(need.grid) {
## Generate grids of dummy locations
if(verbose)
cat("(grids)...")
Gridded <- lapply(Wins, gridsample, ngrid=ngrid)
Dummies <- lapply(Gridded, getElement, name="D")
Templates <- lapply(Gridded, getElement, name="I")
} else {
## locations are given somehow
if(verbose)
cat("(locations)...")
switch(loctype,
points = {
Dummies <- locations
},
mask = {
Dummies <- lapply(locations, punctify)
Templates <- lapply(locations, as.im)
},
stop("Internal error: illegal loctype"))
}
## ..........................................
## ............... PREDICTION ...............
## ..........................................
## initialise hyperframe of predicted values
Answer <- newdata[,integer(0),drop=FALSE]
if(depends.on.row) Answer$id <- factor(levels(MOADF$id))
## Loop over possible types, or execute once:
## ///////////////////////////////////////////
for(lev in marklevels) {
## Pack prediction locations into quadschemes
if(verbose) {
cat("Building quadschemes")
if(isMulti) cat(paste("with mark", lev))
cat("...")
}
if(isMulti) {
## assign current mark level to all dummy points
flev <- factor(lev, levels=marklevels)
Dummies <- lapply(Dummies, "marks<-", value=flev)
}
Quads <- mapply(quad, data=Y, dummy=Dummies,
SIMPLIFY=FALSE, USE.NAMES=FALSE)
## Insert quadschemes into newdata
newdata[, Yname] <- Quads
## compute the Berman-Turner frame
if(verbose)
cat("done.\nStarting prediction...(Berman-Turner frame)...")
moadf <- mppm(formula = model$formula,
data = newdata,
interaction = interactions,
iformula = model$iformula,
random = model$random,
use.gam = model$Fit$use.gam,
correction = model$Info$correction,
rbord = model$Info$rbord,
backdoor = TRUE)
## compute fitted values
if(verbose)
cat("(glm prediction)...")
values <- moadf[, locationvars]
if(want.cif)
values$cif <- Predict(FIT, newdata=moadf, type="response")
if(want.trend) {
if(length(vnames) == 0) {
## Poisson model: trend = cif
values$trend <-
if(want.cif) values$cif else
Predict(FIT, newdata=moadf, type="response")
} else {
## zero the interaction components
moadf[, vnames] <- 0
## compute fitted values
values$trend <- Predict(FIT, newdata=moadf, type="response")
}
}
if(verbose)
cat("done.\nReshaping results...")
##
## Reshape results
## separate answers for each image
values <- split(values, values$id)
##
Trends <- list()
Lambdas <- list()
if(!make.image) {
if(verbose)
cat("(marked point patterns)...")
## values become marks attached to locations
for(i in seq(ndata.new)) {
Val <- values[[i]]
Loc <- Dummies[[i]]
isdum <- !is.data(Quads[[i]])
if(selfcheck)
if(length(isdum) != length(Val$trend))
stop("Internal error: mismatch between data frame and locations")
if(want.trend)
Trends[[i]] <- Loc %mark% (Val$trend[isdum])
if(want.cif)
Lambdas[[i]] <- Loc %mark% (Val$cif[isdum])
}
} else {
if(verbose)
cat("(pixel images)...")
## assign values to pixel images
for(i in seq(ndata.new)) {
values.i <- values[[i]]
Q.i <- Quads[[i]]
values.i <- values.i[!is.data(Q.i), ]
Template.i <- Templates[[i]]
ok.i <- !is.na(Template.i$v)
if(sum(ok.i) != nrow(values.i))
stop("Internal error: mismatch between data frame and image")
if(selfcheck) {
dx <- rasterx.im(Template.i)[ok.i] - values.i$x
dy <- rastery.im(Template.i)[ok.i] - values.i$y
cat(paste("i=", i, "range(dx) =", paste(range(dx), collapse=", "),
"range(dy) =", paste(range(dy), collapse=", "), "\n"))
}
if(want.trend) {
Trend.i <- Template.i
Trend.i$v[ok.i] <- values.i$trend
Trends[[i]] <- Trend.i
}
if(want.cif) {
Lambda.i <- Template.i
Lambda.i$v[ok.i] <- values.i$cif
Lambdas[[i]] <- Lambda.i
}
}
}
if(verbose)
cat("done reshaping.\n")
if(want.trend) {
trendname <- paste0("trend", lev)
Answer[,trendname] <- Trends
}
if(want.cif) {
cifname <- paste0("cif", lev)
Answer[,cifname] <- Lambdas
}
} ## /////////// end loop over possible types //////////////////
return(Answer)
}
## helper functions
emptypattern <- function(w) { ppp(numeric(0), numeric(0), window=w) }
levelsofmarks <- function(X) { levels(marks(X)) }
gridsample <- function(W, ngrid) {
masque <- as.mask(W, dimyx=ngrid)
xx <- raster.x(masque)
yy <- raster.y(masque)
xpredict <- xx[masque$m]
ypredict <- yy[masque$m]
Dummy <- ppp(xpredict, ypredict, window=W)
Image <- as.im(masque)
return(list(D=Dummy, I=Image))
}
punctify <- function(M) {
xx <- raster.x(M)
yy <- raster.y(M)
xpredict <- xx[M$m]
ypredict <- yy[M$m]
return(ppp(xpredict, ypredict, window=M))
}
Predict <- function(object, newdata, type=c("link", "response")) {
type <- match.arg(type)
if(inherits(object, "glmmPQL")) {
object <- stripGLMM(object)
pred <- predict(object, newdata=newdata)
if(type == "response") pred <- object$family$linkinv(pred)
} else {
pred <- predict(object, newdata=newdata, type=type)
}
return(as.numeric(pred))
}
predict.mppm
})
|