1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
#
# profilepl.R
#
# $Revision: 1.47 $ $Date: 2020/11/17 03:47:24 $
#
# computes profile log pseudolikelihood
#
profilepl <- local({
## Determine edge correction
## with partial matching, avoiding collisions with
## other arguments to ppm that have similar names.
getppmcorrection <- function(..., correction = "border",
covariates = NULL, covfunargs = NULL, control = NULL) {
return(correction)
}
isSingleNA <- function(x) { length(x) == 1 && is.na(x) }
profilepl <- function(s, f, ..., aic=FALSE, rbord=NULL, verbose=TRUE,
fast=TRUE) {
callenv <- parent.frame()
s <- as.data.frame(s)
n <- nrow(s)
stopifnot(is.function(f))
## validate 's'
parms <- names(s)
fargs <- names(formals(f))
if(!all(fargs %in% parms)) {
bad <- !(fargs %in% parms)
forgiven <- sapply(formals(f)[bad], isSingleNA)
if(!all(forgiven)) {
slecht <- fargs[bad[!forgiven]]
nsl <- length(slecht)
stop(paste(ngettext(nsl, "Argument", "Arguments"),
commasep(sQuote(slecht)),
ngettext(nsl, "is", "are"),
"not provided in the data frame s"))
}
}
## extra columns in 's' are assumed to be parameters of covariate functions
is.farg <- parms %in% fargs
pass.cfa <- any(!is.farg)
got.cfa <- "covfunargs" %in% names(list(...))
if(pass.cfa && got.cfa)
stop("Some columns in s are superfluous")
##
criterion <- numeric(n)
## make a fake call
pseudocall <- match.call()
pseudocall[[1]] <- as.symbol("ppm")
namcal <- names(pseudocall)
## remove arguments 's' and 'verbose'
retain <- !(namcal %in% c("s", "verbose"))
pseudocall <- pseudocall[retain]
namcal <- namcal[retain]
## place 'f' argument third
np <- length(pseudocall)
fpos <- (1:np)[namcal == "f"]
indices <- (1:np)[-fpos]
if(length(indices) < 3) {
indices <- c(indices, fpos)
} else {
indices <- c(indices[1:3], fpos, indices[-(1:3)])
}
pseudocall <- pseudocall[indices]
namcal <- names(pseudocall)
namcal[namcal=="f"] <- "interaction"
names(pseudocall) <- namcal
## get correction
correction <- getppmcorrection(...)
if(correction == "border") {
## determine border correction distance
if(is.null(rbord)) {
## compute rbord = max reach of interactions
if(verbose) message("(computing rbord)")
for(i in 1:n) {
fi <- do.call(f, as.list(s[i, is.farg, drop=FALSE]))
if(!inherits(fi, "interact"))
stop(paste("f did not yield an object of class",
sQuote("interact")))
re <- reach(fi)
if(is.null(rbord))
rbord <- re
else if(rbord < re)
rbord <- re
}
}
}
## determine whether computations can be saved
if(pass.cfa || got.cfa) {
savecomp <- FALSE
} else {
Q <- do.call(ppm,
append(list(...), list(rbord=rbord, justQ=TRUE)),
envir=callenv)
savecomp <- !oversize.quad(Q)
}
## go
gc()
if(verbose) {
message(paste("comparing", n, "models..."))
pstate <- list()
}
for(i in 1:n) {
if(verbose)
pstate <- progressreport(i, n, state=pstate)
fi <- do.call(f, as.list(s[i, is.farg, drop=FALSE]))
if(!inherits(fi, "interact"))
stop(paste("f did not yield an object of class", sQuote("interact")))
if(pass.cfa)
cfai <- list(covfunargs=as.list(s[i, !is.farg, drop=FALSE]))
## fit model
if(i == 1) {
## fit from scratch
arg1 <- list(...,
interaction=fi,
rbord=rbord, savecomputed=savecomp,
warn.illegal=FALSE,
callstring="",
skip.border=TRUE,
clip.interaction=!fast)
if(pass.cfa) arg1 <- append(arg1, cfai)
fiti <- do.call(ppm, arg1, envir=callenv)
## save intermediate computations (pairwise distances, etc)
precomp <- fiti$internal$computed
savedargs <- list(...,
rbord=rbord, precomputed=precomp,
warn.illegal=FALSE,
callstring="",
skip.border=TRUE,
clip.interaction=!fast)
} else {
## use precomputed data
argi <- append(savedargs, list(interaction=fi))
if(pass.cfa) argi <- append(argi, cfai)
fiti <- do.call(ppm, argi, envir=callenv)
}
## save log pl for each fit
criterion[i] <-
if(aic) -AIC(fiti) else as.numeric(logLik(fiti, warn=FALSE))
## save fitted coefficients for each fit
co <- coef(fiti)
if(i == 1) {
allcoef <- data.frame(matrix(co, nrow=1))
names(allcoef) <- names(co)
} else
allcoef <- rbind(allcoef, co)
}
if(verbose) message("fitting optimal model...")
opti <- which.max(criterion)
gc()
optint <- do.call(f, as.list(s[opti, is.farg, drop=FALSE]))
optarg <- list(..., interaction=optint, rbord=rbord)
if(pass.cfa) {
optcfa <- as.list(s[opti, !is.farg, drop=FALSE])
attr(optcfa, "fitter") <- "profilepl"
optarg <- append(optarg, list(covfunargs=optcfa))
}
optfit <- do.call(ppm, optarg, envir=callenv)
if(verbose) message("done.")
critname <- if(aic) "-AIC" else
if(is.poisson(optfit)) "log l" else
if(optfit$method == "logi") "log CL" else "log PL"
result <- list(param=s,
prof=criterion,
critname=critname,
iopt=opti,
fit=optfit,
rbord=rbord,
fname=as.interact(optfit)$name,
allcoef=allcoef,
otherstuff=list(...),
pseudocall=pseudocall)
class(result) <- c("profilepl", class(result))
return(result)
}
profilepl
})
##
## print method
##
print.profilepl <- function(x, ...) {
head1 <- "profile log pseudolikelihood"
head2 <- "for model: "
psc <- paste(unlist(strsplitretain(format(x$pseudocall))),
collapse=" ")
if(nchar(psc) + nchar(head2) + 1 <= getOption('width')) {
splat(head1)
splat(head2, psc)
} else {
splat(head1, head2)
splat(psc)
}
nparm <- ncol(x$param)
if(waxlyrical('extras')) {
corx <- x$fit$correction
if(identical(corx, "border") && !is.null(x$rbord))
splat("fitted with rbord =", x$rbord)
splat("interaction:", x$fname)
splat("irregular",
ngettext(nparm, "parameter:", "parameters:\n"),
paste(names(x$param),
"in",
unlist(lapply(lapply(as.list(x$param), range), prange)),
collapse="\n"))
}
popt <- x$param[x$iopt,, drop=FALSE]
splat("optimum",
ngettext(nparm, "value", "values"),
"of irregular",
ngettext(nparm, "parameter: ", "parameters:\n"),
commasep(paste(names(popt), "=", popt)))
invisible(NULL)
}
##
## summary method
##
summary.profilepl <- function(object, ...) {
print(object)
cat("\n\noptimal model:\n")
print(object$fit)
}
as.ppm.profilepl <- function(object) {
object$fit
}
fitin.profilepl <- function(object) {
fitin(as.ppm(object))
}
predict.profilepl <- function(object, ...) {
predict(as.ppm(object), ...)
}
##
## plot method
##
plot.profilepl <- local({
plot.profilepl <- function(x, ..., add=FALSE, main=NULL,
tag=TRUE, coeff=NULL, xvariable=NULL,
col=1, lty=1, lwd=1,
col.opt="green", lty.opt=3, lwd.opt=1) {
para <- x$param
## graphics arguments may be expressions involving parameters
if(ncol(para) > 1) {
col <- eval(substitute(col), para)
lwd <- eval(substitute(lwd), para)
lty <- eval(substitute(lty), para)
px <- cbind(para, col, lwd, lty, stringsAsFactors=FALSE)
col <- px$col
lwd <- px$lwd
lty <- px$lty
}
## strip any column that is entirely na
if(any(nacol <- sapply(para, none.finite))) {
warning(paste("Deleted the irregular",
ngettext(sum(nacol), "parameter", "parameters"),
commasep(sQuote(names(para)[nacol])),
"because all values were NA"),
call.=FALSE)
para <- para[, !nacol, drop=FALSE]
}
##
npara <- ncol(para)
## main header
if(is.null(main))
main <- short.deparse(x$pseudocall)
## x variable for plot
if(is.null(xvariable)) {
xvalues <- para[,1L]
xname <- names(para)[1L]
} else {
stopifnot(is.character(xvariable))
if(!(xvariable %in% names(para)))
stop("there is no irregular parameter named", sQuote(xvariable))
xvalues <- para[[xvariable]]
xname <- xvariable
}
## y variable for plot
if(is.null(coeff)) {
yvalues <- x$prof
ylab <- x$critname %orifnull% "log pl"
} else {
stopifnot(is.character(coeff))
allcoef <- x$allcoef
if(!(coeff %in% names(allcoef)))
stop(paste("there is no coefficient named", sQuote(coeff),
"in the fitted model"))
yvalues <- allcoef[[coeff]]
ylab <- paste("coefficient:", coeff)
}
## start plot
if(!add)
do.call.matched(plot.default,
resolve.defaults(list(x=range(xvalues), y=range(yvalues)),
list(type="n", main=main),
list(...),
list(ylab=ylab, xlab=xname)),
extrargs=graphicsPars("plot"))
linepars <- graphicsPars("lines")
if(npara == 1) {
## single curve
do.call.matched(lines.default,
resolve.defaults(list(x=quote(xvalues),
y=quote(yvalues), ...),
spatstat.options("par.fv")),
extrargs=linepars)
} else {
## multiple curves
xvarindex <- match(xname, names(para))
other <- para[, -xvarindex, drop=FALSE]
tapply(1:nrow(para),
as.list(other),
plotslice,
xvalues=xvalues, yvalues=yvalues, other=other,
tag=tag, ...,
col=col, lwd=lwd, lty=lty,
lineargs=linepars)
}
## show optimal value
do.call.matched(abline,
resolve.defaults(list(v = xvalues[x$iopt]),
list(...),
list(lty=lty.opt, lwd=lwd.opt,
col=col.opt)),
extrargs=linepars)
return(invisible(NULL))
}
plotslice <- function(z, xvalues, yvalues, other, tag=TRUE, ...,
lty=1, col=1, lwd=1, lineargs) {
fz <- xvalues[z]
pz <- yvalues[z]
n <- length(xvalues)
if(length(lty) == n) lty <- unique(lty[z])[1]
if(length(col) == n) col <- unique(col[z])[1]
if(length(lwd) == n) lwd <- unique(lwd[z])[1]
do.call.matched(lines.default,
resolve.defaults(list(x=quote(fz), y=quote(pz),
col=col, lwd=lwd, lty=lty),
list(...)),
extrargs=lineargs)
if(tag) {
oz <- other[z, , drop=FALSE]
uniques <- apply(oz, 2, unique)
labels <- paste(names(uniques), "=", uniques, sep="")
label <- paste(labels, sep=",")
ii <- which.max(pz)
do.call.matched(text.default,
list(x=fz[ii], y=pz[ii], labels=label,
col=col, ...),
funargs=graphicsPars("text"))
}
return(NULL)
}
none.finite <- function(x) all(!is.finite(x))
plot.profilepl
})
simulate.profilepl <- function(object, ...) {
simulate(as.ppm(object), ...)
}
parameters.profilepl <- function(model, ...) {
parameters(as.ppm(model))
}
|