1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
#
# progress.R
#
# $Revision: 1.21 $ $Date: 2016/04/25 02:34:40 $
#
# progress plots (envelope representations)
#
dclf.progress <- function(X, ...)
mctest.progress(X, ..., exponent=2)
mad.progress <- function(X, ...)
mctest.progress(X, ..., exponent=Inf)
mctest.progress <- local({
smoothquantile <- function(z, alpha) {
min(quantile(density(z), 1-alpha), max(z))
}
silentmax <- function(z) {
if(all(is.nan(z))) return(NaN)
z <- z[is.finite(z)]
if(length(z) == 0) return(NA) else return(max(z))
}
mctest.progress <- function(X, fun=Lest, ...,
exponent=1, nrank=1, interpolate=FALSE,
alpha, rmin=0) {
check.1.real(exponent)
explain.ifnot(exponent >= 0)
if(missing(fun) && inherits(X, "envelope"))
fun <- NULL
Z <- envelopeProgressData(X, fun=fun, ..., rmin=rmin, exponent=exponent)
R <- Z$R
devdata <- Z$devdata
devsim <- Z$devsim
nsim <- ncol(devsim)
# determine 'alpha' and 'nrank'
if(missing(alpha)) {
if((nrank %% 1) != 0)
stop("nrank must be an integer")
alpha <- nrank/(nsim + 1)
} else {
check.1.real(alpha)
stopifnot(alpha > 0 && alpha < 1)
if(!interpolate) {
if(!missing(nrank))
warning("nrank was ignored because alpha was given", call.=FALSE)
nrank <- alpha * (nsim + 1)
if(abs(nrank - round(nrank)) > 1e-2)
stop("alpha should be a multiple of 1/(nsim + 1)", call.=FALSE)
nrank <- as.integer(round(nrank))
}
}
alphastring <- paste(100 * alpha, "%%", sep="")
# compute critical values
critval <-
if(interpolate) apply(devsim, 1, smoothquantile, alpha=alpha) else
if(nrank == 1) apply(devsim, 1, silentmax) else
apply(devsim, 1, orderstats, k=nrank, decreasing=TRUE)
# create fv object
fname <- if(is.infinite(exponent)) "mad" else
if(exponent == 2) "T" else paste("D[",exponent,"]", sep="")
ylab <- if(is.infinite(exponent)) quote(mad(R)) else
if(exponent == 2) quote(T(R)) else
eval(substitute(quote(D[p](R)), list(p=exponent)))
df <- data.frame(R=R, obs=devdata, crit=critval, zero=0)
mcname <- if(interpolate) "interpolated Monte Carlo" else "Monte Carlo"
p <- fv(df,
argu="R", ylab=ylab, valu="obs", fmla = . ~ R,
desc = c("Interval endpoint R",
"observed value of test statistic %s",
paste(mcname, alphastring, "critical value for %s"),
"zero"),
labl=c("R", "%s(R)", "%s[crit](R)", "0"),
unitname = unitname(X), fname = fname)
fvnames(p, ".") <- c("obs", "crit", "zero")
fvnames(p, ".s") <- c("zero", "crit")
p <- hasenvelope(p, Z$envelope) # envelope may be NULL
return(p)
}
mctest.progress
})
# Do not call this function.
# Performs underlying computations
envelopeProgressData <- local({
envelopeProgressData <-
function(X, fun=Lest, ..., exponent=1,
alternative=c("two.sided", "less", "greater"),
leaveout=1, scale=NULL, clamp=FALSE,
normalize=FALSE, deflate=FALSE,
rmin=0,
save.envelope = savefuns || savepatterns,
savefuns = FALSE,
savepatterns = FALSE) {
alternative <- match.arg(alternative)
if(!(leaveout %in% 0:2))
stop("Argument leaveout should equal 0, 1 or 2")
## compute or extract simulated functions
X <- envelope(X, fun=fun, ..., alternative=alternative,
savefuns=TRUE, savepatterns=savepatterns)
Y <- attr(X, "simfuns")
## extract values
R <- with(X, .x)
obs <- with(X, .y)
sim <- as.matrix(as.data.frame(Y))[, -1]
nsim <- ncol(sim)
## choose function as reference
has.theo <- ("theo" %in% names(X))
use.theo <- identical(attr(X, "einfo")$use.theory, TRUE)
if(use.theo && !has.theo)
warning("No theoretical function available; use.theory ignored")
if(use.theo && has.theo) {
# theo.used <- TRUE
reference <- with(X, theo)
leaveout <- 0
} else {
# theo.used <- FALSE
if(leaveout == 2) {
## use sample mean of simulations only
reference <- with(X, mmean)
} else {
## use sample mean of simulations *and* observed
reference <- (nsim * with(X, mmean) + obs)/(nsim + 1)
}
}
## restrict range
if(rmin > 0) {
if(sum(R >= rmin) < 2)
stop("rmin is too large for the available range of r values")
nskip <- sum(R < rmin)
} else nskip <- 0
## determine rescaling if any
if(is.null(scale)) {
scaling <- NULL
scr <- 1
} else if(is.function(scale)) {
scaling <- scale(R)
sname <- "scale(r)"
ans <- check.nvector(scaling, length(R), things="values of r",
fatal=FALSE, vname=sname)
if(!ans)
stop(attr(ans, "whinge"), call.=FALSE)
if(any(bad <- (scaling <= 0))) {
## issue a warning unless this only happens at r=0
if(any(bad[R > 0]))
warning(paste("Some values of", sname, "were negative or zero:",
"scale was reset to 1 for these values"),
call.=FALSE)
scaling[bad] <- 1
}
scr <- scaling
} else stop("Argument scale should be a function")
## compute deviations
rawdevDat <- Deviation(obs, reference, leaveout, nsim, sim[,1])
rawdevSim <- Deviation(sim, reference, leaveout, nsim)
## evaluate signed/absolute deviation relevant to alternative
ddat <- RelevantDeviation(rawdevDat, alternative, clamp, scaling)
dsim <- RelevantDeviation(rawdevSim, alternative, clamp, scaling)
## compute test statistics
if(is.infinite(exponent)) {
## MAD
devdata <- cummaxskip(ddat, nskip)
devsim <- apply(dsim, 2, cummaxskip, nskip=nskip)
if(deflate) {
devdata <- scr * devdata
devsim <- scr * devsim
}
testname <- "Maximum absolute deviation test"
} else {
dR <- c(0, diff(R))
if(clamp || (alternative == "two.sided")) {
## deviations are nonnegative
devdata <- cumsumskip(dR * ddat^exponent, nskip)
devsim <- apply(dR * dsim^exponent, 2, cumsumskip, nskip=nskip)
} else {
## sign of deviations should be retained
devdata <- cumsumskip(dR * sign(ddat) * abs(ddat)^exponent,
nskip=nskip)
devsim <- apply(dR * sign(dsim) * abs(dsim)^exponent,
2, cumsumskip, nskip=nskip)
}
if(normalize) {
devdata <- devdata/R
devsim <- sweep(devsim, 1, R, "/")
}
if(deflate) {
devdata <- scr * sign(devdata) * abs(devdata)^(1/exponent)
devsim <- scr * sign(devsim) * abs(devsim)^(1/exponent)
}
testname <- if(exponent == 2) "Diggle-Cressie-Loosmore-Ford test" else
if(exponent == 1) "Integral absolute deviation test" else
paste("Integrated", ordinal(exponent), "Power Deviation test")
}
result <- list(R=R, devdata=devdata, devsim=devsim, testname=testname,
scaleR=scr, clamp=clamp)
if(save.envelope)
result$envelope <- X
return(result)
}
cumsumskip <- function(x, nskip=0) {
if(nskip == 0) cumsum(x) else c(rep(NA, nskip), cumsum(x[-seq_len(nskip)]))
}
cummaxskip <- function(x, nskip=0) {
if(nskip == 0) cummax(x) else c(rep(NA, nskip), cummax(x[-seq_len(nskip)]))
}
envelopeProgressData
})
dg.progress <- function(X, fun=Lest, ...,
exponent=2, nsim=19, nsimsub=nsim-1, nrank=1, alpha,
leaveout=1, interpolate=FALSE, rmin=0,
savefuns=FALSE, savepatterns=FALSE,
verbose=TRUE) {
env.here <- sys.frame(sys.nframe())
if(!missing(nsimsub) && !relatively.prime(nsim, nsimsub))
stop("nsim and nsimsub must be relatively prime")
## determine 'alpha' and 'nrank'
if(missing(alpha)) {
if((nrank %% 1) != 0)
stop("nrank must be an integer")
alpha <- nrank/(nsim + 1)
} else {
check.1.real(alpha)
stopifnot(alpha > 0 && alpha < 1)
if(!interpolate) {
if(!missing(nrank))
warning("nrank was ignored because alpha was given", call.=FALSE)
nrank <- alpha * (nsim + 1)
if(abs(nrank - round(nrank)) > 1e-2)
stop("alpha should be a multiple of 1/(nsim + 1)", call.=FALSE)
nrank <- as.integer(round(nrank))
}
}
if(verbose)
cat("Computing first-level test data...")
## generate or extract simulated patterns and functions
E <- envelope(X, fun=fun, ..., nsim=nsim,
savepatterns=TRUE, savefuns=TRUE,
verbose=FALSE,
envir.simul=env.here)
## get progress data
PD <- envelopeProgressData(E, fun=fun, ..., rmin=rmin, nsim=nsim,
exponent=exponent, leaveout=leaveout,
verbose=FALSE)
## get first level MC test significance trace
T1 <- mctest.sigtrace(E, fun=fun, nsim=nsim,
exponent=exponent,
leaveout=leaveout,
interpolate=interpolate, rmin=rmin,
confint=FALSE, verbose=FALSE, ...)
R <- T1$R
phat <- T1$pest
if(verbose) {
cat("Done.\nComputing second-level data... ")
state <- list()
}
## second level traces
simpat <- attr(E, "simpatterns")
phat2 <- matrix(, length(R), nsim)
for(j in seq_len(nsim)) {
simj <- simpat[[j]]
sigj <- mctest.sigtrace(simj,
fun=fun, nsim=nsimsub,
exponent=exponent,
interpolate=interpolate,
leaveout=leaveout,
rmin=rmin,
confint=FALSE, verbose=FALSE, ...)
phat2[,j] <- sigj$pest
if(verbose) state <- progressreport(j, nsim, state=state)
}
if(verbose) cat("Done.\n")
## Dao-Genton procedure
dgcritrank <- 1 + rowSums(phat > phat2)
dgcritrank <- pmin(dgcritrank, nsim)
devsim.sort <- t(apply(PD$devsim, 1, sort, decreasing=TRUE, na.last=TRUE))
ii <- cbind(seq_along(dgcritrank), dgcritrank)
devcrit <- devsim.sort[ii]
devdata <- PD$devdata
## create fv object
fname <- if(is.infinite(exponent)) "mad" else
if(exponent == 2) "T" else paste("D[",exponent,"]", sep="")
ylab <- if(is.infinite(exponent)) quote(mad(R)) else
if(exponent == 2) quote(T(R)) else
eval(substitute(quote(D[p](R)), list(p=exponent)))
df <- data.frame(R=R, obs=devdata, crit=devcrit, zero=0)
mcname <- if(interpolate) "interpolated Monte Carlo" else "Monte Carlo"
p <- fv(df,
argu="R", ylab=ylab, valu="obs", fmla = . ~ R,
desc = c("Interval endpoint R",
"observed value of test statistic %s",
paste(mcname, paste0(100 * alpha, "%%"), "critical value for %s"),
"zero"),
labl=c("R", "%s(R)", "%s[crit](R)", "0"),
unitname = unitname(X), fname = fname)
fvnames(p, ".") <- c("obs", "crit", "zero")
fvnames(p, ".s") <- c("zero", "crit")
if(savefuns || savepatterns)
p <- hasenvelope(p, E)
return(p)
}
|