1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
#
# psst.R
#
# Computes the GNZ contrast of delta-f for any function f
#
# $Revision: 1.10 $ $Date: 2022/01/04 05:30:06 $
#
################################################################################
#
psst <- function(object, fun, r=NULL, breaks=NULL, ...,
model=NULL,
trend=~1, interaction=Poisson(),
rbord=reach(interaction),
truecoef=NULL, hi.res=NULL,
funargs=list(correction="best"),
verbose=TRUE) {
if(is.ppm(object)) {
fit <- object
} else if(is.ppp(object) || is.quad(object)) {
if(is.ppp(object)) object <- quadscheme(object, ...)
if(!is.null(model)) {
fit <- update(model, Q=object, forcefit=TRUE)
} else {
fit <- ppm(object, trend=trend, interaction=interaction, rbord=rbord,
forcefit=TRUE)
}
} else
stop("object should be a fitted point process model or a point pattern")
# rfixed <- !is.null(r) || !is.null(breaks)
# Extract data and quadrature points
Q <- quad.ppm(fit, drop=FALSE)
X <- data.ppm(fit)
U <- union.quad(Q)
Z <- is.data(Q) # indicator data/dummy
# E <- equalsfun.quad(Q)
# WQ <- w.quad(Q) # quadrature weights
# integrals will be restricted to quadrature points
# that were actually used in the fit
# USED <- getglmsubset(fit)
if(fit$correction == "border") {
rbord <- fit$rbord
b <- bdist.points(U)
USED <- (b > rbord)
} else USED <- rep.int(TRUE, U$n)
# basic statistics
Win <- Window(X)
npts <- npoints(X)
areaW <- area(Win)
lambda <- npts/areaW
# adjustments to account for restricted domain of pseudolikelihood
# if(any(!USED) && spatstat.options("eroded.intensity")) {
# XUSED <- USED[Z]
# npts.used <- sum(Z & USED)
# area.used <- sum(WQ[USED])
# lambda.used <- npts.used/area.used
# } else {
# XUSED <- rep.int(TRUE, npts)
# npts.used <- npts
# area.used <- areaW
# lambda.used <- lambda
# }
# determine breakpoints for r values
rmaxdefault <- rmax.rule("G", Win, lambda)
breaks <- handle.r.b.args(r, breaks, Win, rmaxdefault=rmaxdefault)
rvals <- breaks$r
rmax <- breaks$max
# residuals
resid <- residuals(fit, type="raw",drop=FALSE,
new.coef=truecoef, quad=hi.res)
rescts <- with(resid, "continuous")
# absolute weight for continuous integrals
wc <- -rescts
# initialise fv object
df <- data.frame(r=rvals, theo=0)
desc <- c("distance argument r", "value 0 corresponding to perfect fit")
ans <- fv(df, "r", substitute(bold(R)~Delta~S(r), NULL),
"theo", . ~ r,
alim=c(0, rmax), c("r","%s[theo](r)"), desc,
fname="bold(R)~Delta~S")
# evaluate fun(X) for data
fX <- do.call(fun, append(list(X, r=rvals), funargs))
fXunits <- unitname(fX)
# Extract 'best' estimate only
fX <- with(fX, .y)
zero <- numeric(length(fX))
# sum over all quadrature points
iused <- seq(U$n)[USED]
nused <- length(iused)
if(verbose) cat(paste("\nProcessing", nused, "quadrature points..."))
# running sums & integrals
sumX <- zero
integ <- integ2 <- zero
# template for X \cup {u}
uX <- superimpose(U[1], X, W=Win, check=FALSE)
Ux <- U$x
Uy <- U$y
#
if(verbose) pstate <- list()
#
for(j in seq(nused)) {
i <- iused[j]
wi <- wc[i]
if(Z[i]) {
# data point
fXi <- do.call(fun, append(list(X[-i], r=rvals), funargs))
fXi <- with(fXi, .y)
deltaf <- fX - fXi
sumX <- sumX + deltaf
} else {
# dummy point
uX$x[1] <- Ux[i]
uX$y[1] <- Uy[i]
fuX <- do.call(fun, append(list(uX, r=rvals), funargs))
fuX <- with(fuX, .y)
deltaf <- fuX - fX
}
integ <- integ + wi * deltaf
integ2 <- integ2 + wi * deltaf^2
#
if(j %% 500 == 0) {
cat("[garbage ")
gc()
cat("collected]")
}
if(verbose) pstate <- progressreport(j, nused, state=pstate)
}
sdv <- sqrt(integ2)
res <- sumX - integ
ans <- bind.fv(ans,
data.frame(dat=sumX,
com=integ,
var=integ2,
sd=sdv,
hi=2*sdv,
lo=-2*sdv,
res=res,
stdres=res/sdv),
c("Sigma~Delta~S(r)",
"bold(C)~Delta~S(r)",
"bold(C)^2~Delta~S(r)",
"sqrt(bold(C)^2~Delta~S(r))",
"%s[hi](r)",
"%s[lo](r)",
"bold(R)~Delta~S(r)",
"bold(T)~Delta~S(r)"),
c("data pseudosum (contribution to %s)",
"model compensator (contribution to %s)",
"pseudovariance of %s",
"sqrt(pseudovariance) of %s",
"upper 2 sigma critical band for %s",
"lower 2 sigma critical band for %s",
"pseudoresidual function %s",
"standardised pseudoresidual function %s"),
"res")
fvnames(ans,".") <- c("res", "hi", "lo", "theo")
unitname(ans) <- fXunits
#
return(ans)
}
npfun <- function(X, ..., r) {
npts <- npoints(X)
# initialise fv object
df <- data.frame(r=r, theo=0, npoint=npts)
desc <- c("distance argument r",
"value 0",
"value equal to number of points")
ans <- fv(df, "r", substitute(npoints(r), NULL),
"npoint", . ~ r,
alim=c(0, max(r)), c("r","%s[theo](r)", "%s[obs](r)"),
desc, fname="npoints")
unitname(ans) <- unitname(X)
return(ans)
}
nndcumfun <- function(X, ..., r) {
nn <- nndist(X)
bk <- breakpts.from.r(r)
# nn <- nn[nn <= bdist.points(X)]
h <- whist(nn, bk$val)
# initialise fv object
df <- data.frame(r=r, theo=0, obs=h)
desc <- c("distance argument r",
"value 0",
"observed count")
ans <- fv(df, "r", substitute(nndcount(r), NULL),
"obs", . ~ r,
alim=c(0, max(r)), c("r","%s[theo](r)", "%s[obs](r)"),
desc, fname="nndcount")
unitname(ans) <- unitname(X)
return(ans)
}
|