1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
#
# psstA.R
#
# Pseudoscore residual for unnormalised F (area-interaction)
#
# $Revision: 1.8 $ $Date: 2022/01/04 05:30:06 $
#
################################################################################
#
psstA <- function(object, r=NULL, breaks=NULL, ...,
model=NULL,
trend=~1, interaction=Poisson(),
rbord=reach(interaction), ppmcorrection="border",
correction="all",
truecoef=NULL, hi.res=NULL,
nr=spatstat.options("psstA.nr"),
ngrid=spatstat.options("psstA.ngrid")) {
if(is.ppm(object))
fit <- object
else if(is.ppp(object) || is.quad(object)) {
# convert to quadscheme
if(is.ppp(object))
object <- quadscheme(object, ...)
# fit model
if(!is.null(model))
fit <- update(model, Q=object, forcefit=TRUE)
else if(ppmcorrection == "border")
fit <- ppm(object,
trend=trend, interaction=interaction,
rbord=rbord, forcefit=TRUE)
else
fit <- ppm(object,
trend=trend, interaction=interaction,
correction=ppmcorrection, forcefit=TRUE)
} else
stop("object should be a fitted point process model or a point pattern")
rfixed <- !is.null(r) || !is.null(breaks)
# Extract data and quadrature points
Q <- quad.ppm(fit, drop=FALSE)
X <- data.ppm(fit)
U <- union.quad(Q)
Z <- is.data(Q) # indicator data/dummy
# E <- equalsfun.quad(Q)
# WQ <- w.quad(Q) # quadrature weights
# integrals will be restricted to quadrature points
# that were actually used in the fit
# USED <- getglmsubset(fit)
if(fit$correction == "border") {
rbord <- fit$rbord
b <- bdist.points(U)
USED <- (b > rbord)
bX <- bdist.points(X)
USEDX <- (bX > rbord)
} else {
USED <- rep.int(TRUE, U$n)
USEDX <- rep.int(TRUE, X$n)
}
# basic statistics
Win <- Window(X)
npts <- npoints(X)
areaW <- area(Win)
lambda <- npts/areaW
# determine breakpoints for r values
rmaxdefault <- rmax.rule("F", Win, lambda)
if(rfixed)
breaks <- handle.r.b.args(r, breaks, Win, rmaxdefault=rmaxdefault)
else {
# create fairly coarse 'r' values
r <- seq(0, rmaxdefault, length=nr)
breaks <- breakpts.from.r(r)
}
rvals <- breaks$r
rmax <- breaks$max
# residuals
res <- residuals(fit, type="raw", drop=FALSE,
new.coef=truecoef, quad=hi.res)
#
rescts <- with(res, "continuous")
# absolute weight for continuous integrals
wc <- -rescts
# initialise fv object
df <- data.frame(r=rvals, theo=0)
desc <- c("distance argument r", "value 0 corresponding to perfect fit")
ans <- fv(df, "r", substitute(bold(R)~Delta~V[A](r), NULL),
"theo", . ~ r,
alim=c(0, rmax), c("r","%s[theo](r)"), desc,
fname="bold(R)~Delta~V[A]")
#
# for efficiency, compute the largest value of distance transform
Dmax <- 0
for(i in 1:npts) {
Di <- distmap(X[-i])
Dimax <- summary(Di)$max
Dmax <- max(Dmax, Dimax)
}
Rmax <- min(max(rvals), Dmax * 1.1)
nontrivial <- (rvals <= Rmax)
trivialzeroes <- numeric(sum(!nontrivial))
# pseudosum
Ax <- areaLoss.grid(X, rvals[nontrivial], subset=USEDX, ngrid=ngrid)
C1 <- apply(Ax, 2, sum)
C1 <- c(C1, trivialzeroes)
# pseudocompensator
OK <- USED & !Z
Au <- areaGain.grid(U[OK], X, rvals[nontrivial], W=Win, ngrid=ngrid)
lamu <- matrix(wc[OK], nrow=nrow(Au), ncol=ncol(Au))
C2 <- apply(lamu * Au, 2, sum)
C2 <- c(C2, trivialzeroes)
# pseudoscore residual
Ctot <- C1 - C2
# tack on
ans <- bind.fv(ans,
data.frame(dat=C1,
com=C2,
res=Ctot),
c("Sigma~Delta~V[A](r)", "bold(C)~Delta~V[A](r)", "%s(r)"),
c("data pseudosum (contribution to %s)",
"model pseudocompensator (contribution to %s)",
"pseudoscore residual %s"),
"res")
#
# pseudovariance
# (skipped if called by envelope() etc)
#
if(correction == "all") {
lamX <- matrix(wc[USED & Z], nrow=nrow(Ax), ncol=ncol(Ax))
Var <- apply(lamu * Au^2, 2, sum) + apply(lamX * Ax^2, 2, sum)
Var <- c(Var, trivialzeroes)
# two-sigma limits
TwoSig <- 2 * sqrt(Var)
# tack on
ans <- bind.fv(ans,
data.frame(var=Var,
up=TwoSig,
lo=-TwoSig),
c("bold(C)^2~Delta~V[A](r)",
"%s[up](r)", "%s[lo](r)"),
c("pseudovariance of %s",
"upper 2sigma critical limit for %s",
"lower 2sigma critical limit for %s"),
"res")
fvnames(ans, ".") <- c("res", "up", "lo", "theo")
}
unitname(ans) <- unitname(fit)
#
return(ans)
}
|