1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
#
# QQ plot of smoothed residual field against model
#
# qqplot.ppm() QQ plot (including simulation)
#
# $Revision: 1.32 $ $Date: 2022/01/18 09:51:29 $
#
qqplot.ppm <- local({
## How to refit the model
refit <- function(fit, pattern) {
update.ppm(fit, Q=pattern, use.internal=(fit$method != "mppm"))
}
## how to compute the residual field
residualfield <- function(fit, ..., addtype=FALSE) {
d <- diagnose.ppm(fit, which="smooth",
plot.it=FALSE, compute.cts=FALSE, compute.sd=FALSE,
check=FALSE, ...)
result <- d$smooth$Z$v
if(addtype) {
attr(result, "type") <- d$type
attr(result, "typename") <- d$typename
}
return(result)
}
qqplot.ppm <-
function(fit, nsim=100, expr=NULL, ..., type="raw", style="mean",
fast=TRUE, verbose=TRUE, plot.it=TRUE,
dimyx=NULL, nrep=if(fast) 5e4 else 1e5,
control=update(default.rmhcontrol(fit), nrep=nrep),
saveall=FALSE,
monochrome=FALSE,
limcol=if(monochrome) "black" else "red",
maxerr=max(100, ceiling(nsim/10)),
check=TRUE, repair=TRUE, envir.expr) {
verifyclass(fit, "ppm")
if(check && damaged.ppm(fit)) {
if(!repair)
stop("object format corrupted; try update(fit, use.internal=TRUE)")
message("object format corrupted; repairing it.")
fit <- update(fit, use.internal=TRUE)
}
if(fast) {
oldnpixel <- spatstat.options("npixel")
if(is.null(dimyx))
dimyx <- pmin(40, rev(oldnpixel))
spatstat.options(npixel=rev(dimyx))
}
################ How to evaluate residuals ##########################
## Quantiles of the residual field will be computed.
## Data values
dat <- residualfield(fit, type=type, ..., dimyx=dimyx, addtype=TRUE)
## type of residuals (partially matched and validated by diagnose.ppm)
type <- attr(dat, "type")
typename <- attr(dat, "typename")
################## How to perform simulations? #######################
## envir.call <- sys.parent()
envir.here <- sys.frame(sys.nframe())
## extract.from.list <- FALSE
inext <- 0 # to placate package checker
dont.complain.about(inext)
if(is.null(expr)) {
## We will simulate from the fitted model 'nsim' times
## and refit the model to these simulations
simsource <- "fit"
how.simulating <- "simulating from fitted model"
## prepare rmh arguments
rcontrol <- rmhcontrol(control)
rmodel <- rmhmodel(fit,
control=rcontrol, project=FALSE, verbose=verbose)
rstart <- rmhstart(n.start=data.ppm(fit)$n)
## pre-digest arguments
rmhinfolist <- rmh(rmodel, rstart, rcontrol, preponly=TRUE, verbose=FALSE)
## expression to be evaluated each time
expr <- expression(
refit(fit,
rmhEngine(rmhinfolist, verbose=FALSE)))
envir.expr <- envir.here
## pacify code checkers
dont.complain.about(rmhinfolist)
} else if(is.expression(expr)) {
simsource <- "expr"
how.simulating <- paste("evaluating", sQuote("expr"))
if(missing(envir.expr) || is.null(envir.expr))
envir.expr <- parent.frame()
} else if(inherits(expr, "envelope")) {
simpat <- attr(expr, "simpatterns")
if(!is.null(simpat) && all(sapply(simpat, is.ppp))) {
expr <- expression(simpat[[inext]])
envir.expr <- envir.here
dont.complain.about(simpat)
simsource <- "list"
how.simulating <- "extracting point pattern from list"
} else stop(paste("Argument", sQuote("expr"),
"is an envelope object,",
"but does not contain point patterns"),
call.=FALSE)
} else if(is.list(expr) && all(sapply(expr, is.ppp))) {
simpat <- expr
expr <- expression(simpat[[inext]])
envir.expr <- envir.here
dont.complain.about(simpat)
simsource <- "list"
how.simulating <- "extracting point pattern from list"
} else stop(paste(sQuote("expr"),
"should be an expression, or an envelope object,",
"or a list of point patterns"),
call.=FALSE)
exprstring <- if(simsource == "expr") deparse(expr) else NULL
###### Perform simulations
if(verbose) {
cat(paste("Simulating", nsim, "realisations... "))
pstate <- list()
}
simul.sizes <- numeric(nsim)
isim <- 0
ierr <- 0
repeat {
inext <- isim + 1
## protect from randomly-generated crashes in gam
## ei <- try(eval(expr, envir=envir.expr), silent=!verbose)
ei <- eval(expr, envir=envir.expr)
if(inherits(ei, "try-error")) {
## error encountered in evaluating 'expr'
ierr <- ierr + 1
if(ierr > maxerr)
stop(paste("Exceeded maximum of", maxerr,
"failures in", how.simulating,
"after generating only", isim, "realisations"))
else break
} else {
## simulation successful
isim <- isim + 1
fiti <-
if(simsource == "fit")
ei
else if(is.ppm(ei))
ei
else if(is.ppp(ei))
refit(fit, ei)
else
stop("result of eval(expr) is not a ppm or ppp object")
## diagnostic info
simul.sizes[isim] <- data.ppm(fiti)$n
## compute residual field
resi <- residualfield(fiti, type=type, ..., dimyx=dimyx)
if(isim == 1)
sim <- array(, dim=c(dim(resi), nsim))
sim[,,isim] <- resi
if(verbose)
pstate <- progressreport(isim, nsim, state=pstate)
if(isim >= nsim)
break
}
}
###### Report diagnostics
if(ierr > 0)
cat(paste("\n\n**Alert:",
ierr, "failures occurred in", how.simulating, "\n\n"))
nempty <- sum(simul.sizes == 0)
if(nempty > 0)
cat(paste("\n\n**Alert:",
nempty, "out of", nsim,
"simulated patterns were empty.\n\n"))
else
cat(paste("\nDiagnostic info:\n",
"simulated patterns contained an average of",
mean(simul.sizes), "points.\n"))
if(nempty == nsim)
warning("All simulated patterns were empty")
############ Plot them
switch(style,
classical = {
rr <- range(c(dat,sim))
result <- qqplot(sim, dat, xlim=rr, ylim=rr, asp=1.0,
xlab="Quantiles of simulation",
ylab="Quantiles of data",plot.it=plot.it)
title(sub=typename)
abline(0,1, lty=2)
result <- append(result,
list(data=dat,
sim=sim,
xlim=rr,
ylim=rr,
xlab="Quantiles of simulation",
ylab="Quantiles of data",
rtype=type,
typename=typename,
nsim=nsim,
fit=fit,
expr=exprstring,
simsource = simsource
)
)
},
mean = {
## compute quantiles corresponding to probabilities p[i]
## separately in each realisation.
if(verbose) cat("Calculating quantiles...")
if(fast) {
p <- ppoints(min(100,length(dat)), 3/8)
qsim <- apply(sim, 3, quantile, probs=p, na.rm=TRUE)
} else {
qsim <- apply(sim, 3, sort, na.last=TRUE)
}
if(verbose) cat("averaging...")
## sample mean of each quantile
meanq <- apply(qsim, 1, mean, na.rm=TRUE)
## et cetera
varq <- apply(qsim, 1, var, na.rm=TRUE)
sdq <- sqrt(varq)
q.025 <- apply(qsim, 1, quantile, probs=0.025, na.rm=TRUE)
q.975 <- apply(qsim, 1, quantile, probs=0.975, na.rm=TRUE)
rr <- range(c(meanq,dat), na.rm=TRUE)
dats <- if(fast) quantile(dat, probs=p, na.rm=TRUE) else
sort(dat, na.last=TRUE)
if(verbose) cat("..Done.\n")
if(plot.it) {
plot(meanq, dats,
xlab="Mean quantile of simulations", ylab="data quantile",
xlim=rr, ylim=rr, asp=1.0)
abline(0,1)
lines(meanq, q.025, lty=2, col=limcol)
lines(meanq, q.975, lty=2, col=limcol)
title(sub=typename)
}
result <- list(x=meanq, y=dats, sdq=sdq,
q.025=q.025, q.975=q.975,
data=dat, sim=sim,
xlim=rr, ylim=rr,
xlab="Mean quantile of simulations",
ylab="data quantile",
rtype=type,
typename=typename,
nsim=nsim,
fit=fit,
expr=exprstring,
simsource=simsource)
},
stop(paste("Unrecognised option for", sQuote("style")))
)
## Throw out baggage if not wanted
if(!saveall) {
result$fit <- summary(fit, quick=TRUE)
result$sim <- NULL
}
## reset npixel
if(fast)
spatstat.options(npixel=oldnpixel)
##
class(result) <- c("qqppm", class(result))
return(invisible(result))
}
qqplot.ppm
})
plot.qqppm <- local({
plot.qqppm <- function(x, ..., limits=TRUE,
monochrome=spatstat.options('monochrome'),
limcol=if(monochrome) "black" else "red") {
stopifnot(inherits(x, "qqppm"))
default.type <- if(length(x$x) > 150) "l" else "p"
do.call(myplot,
resolve.defaults(list(quote(x), ..., type=default.type,
limits=limits, limcol=limcol)))
return(invisible(x))
}
myplot <- function(object,
xlab = object$xlab, ylab = object$ylab,
xlim = object$xlim, ylim = object$ylim,
asp = 1,
type = default.type,
..., limits=TRUE, limcol="red") {
plot(object$x, object$y, xlab = xlab, ylab = ylab,
xlim = xlim, ylim = ylim, asp = asp, type = type, ...)
abline(0, 1)
if(limits) {
if(!is.null(object$q.025))
lines(object$x, object$q.025, lty = 2, col=limcol)
if(!is.null(object$q.975))
lines(object$x, object$q.975, lty = 2, col=limcol)
}
typename <- object$typename %orifnull% paste(object$rtype, "residuals")
title(sub=typename)
}
plot.qqppm
})
print.qqppm <- function(x, ...) {
stopifnot(inherits(x, "qqppm"))
splat("Q-Q plot of point process residuals",
"of type", sQuote(x$rtype), "\n",
"based on", x$nsim, "simulations")
simsource <- x$simsource
if(is.null(simsource)) # old version
simsource <- if(x$simulate.from.fit) "fit" else "expr"
switch(simsource,
fit = {
fit <- x$fit
sumfit <- if(is.ppm(fit)) summary(fit, quick=TRUE)
else if(inherits(fit, "summary.ppm")) fit
else list(name="(unrecognised format)")
splat("\nSimulations from fitted model:", sumfit$name)
},
expr = {
splat("Simulations obtained by evaluating the following expression:")
print(x$expr)
},
list = {
splat("Simulated point patterns were provided in a list")
})
invisible(NULL)
}
|