1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  
     | 
    
      #
#    relrisk.R
#
#   Estimation of relative risk
#
#  $Revision: 1.53 $  $Date: 2022/03/28 07:05:55 $
#
relrisk <- function(X, ...) UseMethod("relrisk")
                                      
relrisk.ppp <- local({
  relrisk.ppp <- function(X, sigma=NULL, ..., 
                          at=c("pixels", "points"),
                          weights = NULL, varcov=NULL, 
                          relative=FALSE,
                          adjust=1, edge=TRUE, diggle=FALSE, se=FALSE,
                          casecontrol=TRUE, control=1, case) {
    stopifnot(is.ppp(X))
    stopifnot(is.multitype(X))
    control.given <- !missing(control)
    case.given <- !missing(case)
    at <- match.arg(at)
    ## evaluate numerical weights (multiple columns not allowed)
    weights <- pointweights(X, weights=weights, parent=parent.frame())
    weighted <- !is.null(weights)
    ## 
    npts <- npoints(X)
    marx <- marks(X)
    imarks <- as.integer(marx)
    types <- levels(marx)
    ntypes <- length(types)
    if(ntypes == 1)
      stop("Data contains only one type of points")
    ## 
    casecontrol <- casecontrol && (ntypes == 2)
    if((control.given || case.given) && !(casecontrol || relative)) {
      aa <- c("control", "case")[c(control.given, case.given)]
      nn <- length(aa)
      warning(paste(ngettext(nn, "Argument", "Arguments"),
                    paste(sQuote(aa), collapse=" and "),
                    ngettext(nn, "was", "were"),
                    "ignored, because relative=FALSE and",
                    if(ntypes==2) "casecontrol=FALSE" else
                    "there are more than 2 types of points"))
    }
    ## prepare for analysis
    Y <- split(X) 
    splitweights <- if(weighted) split(weights, marx) else rep(list(NULL), ntypes)
    uX <- unmark(X)
    ## compute bandwidth (default bandwidth selector is bw.relrisk)
    ker <- resolve.2D.kernel(...,
                             sigma=sigma, varcov=varcov, adjust=adjust,
                             bwfun=bw.relrisk, x=X)
    sigma <- ker$sigma
    varcov <- ker$varcov
    ## determine smoothing parameters   
    if(bandwidth.is.infinite(sigma))
      edge <- FALSE
    SmoothPars <- resolve.defaults(list(sigma=sigma, varcov=varcov, at=at,
                                        edge=edge, diggle=diggle),
                                   list(...))
    ## threshold for 0/0
    tinythresh <- 8 * .Machine$double.eps
    ## 
    if(se) {
      ## determine other bandwidth for variance estimation
      VarPars <- SmoothPars
      if(bandwidth.is.infinite(sigma)) {
        varconst <- 1
      } else if(is.null(varcov)) {
        varconst <- 1/(4 * pi * prod(sigma))
        VarPars$sigma <- sigma/sqrt(2)
      } else {
        varconst <- 1/(4 * pi * sqrt(det(varcov)))
        VarPars$varcov <- varcov/2
      }
      if(edge) {
        ## evaluate edge correction weights
        edgeim <- do.call(second.moment.calc,
                          append(list(x=uX, what="edge"), SmoothPars))
        if(diggle || at == "points") {
          edgeX <- safelookup(edgeim, uX, warn=FALSE)
          diggleX <- 1/edgeX
          diggleX[!is.finite(diggleX)] <- 0
        }
        edgeim <- edgeim[Window(X), drop=FALSE]
      }
    }
    ## .........................................
    ## compute intensity estimates for each type
    ## .........................................
    switch(at,
           pixels = {
             ## intensity estimates of each type
             Deach <- do.call(density.splitppp,
                              append(list(x=Y, weights=splitweights),
                                     SmoothPars))
             ## compute intensity estimate for unmarked pattern
             Dall <- im.apply(Deach, sum, check=FALSE)
             ## WAS: Dall <- Reduce("+", Deach)
             ## variance terms
             if(se) {
               if(!edge) {
                 ## no edge correction
                 Veach <- do.call(density.splitppp,
                                  append(list(x=Y, weights=splitweights),
                                         VarPars))
               } else if(!diggle) {
                 ## edge correction e(u)
                 Veach <- do.call(density.splitppp,
                                  append(list(x=Y, weights=splitweights),
                                         VarPars))
                 #' Ops.imlist not yet working
                 Veach <- imagelistOp(Veach, edgeim, "/")
               } else {
                 ## Diggle edge correction e(x_i)
                 diggweights <- if(weighted) { diggleX * weights } else diggleX
                 Veach <- as.solist(mapply(density.ppp,
                                           x=Y,
                                           weights=split(diggweights, marx),
                                           MoreArgs=VarPars,
                                           SIMPLIFY=FALSE))
               }
               #' Ops.imlist not yet working
               Veach <- imagelistOp(Veach, varconst, "*")
               Vall <- im.apply(Veach, sum, check=FALSE)
               ## WAS:   Vall <- Reduce("+", Veach)
             }
           },
           points = {
             ## intensity estimates of each type **at each data point**
             ## dummy variable matrix
             dumm <- matrix(0, npts, ntypes)
             dumm[cbind(seq_len(npts), imarks)] <- 1
             colnames(dumm) <- types
             if(weighted) dumm <- dumm * weights
             Deach <- do.call(density.ppp,
                              append(list(x=uX, weights=dumm),
                                     SmoothPars))
             ## compute intensity estimate for unmarked pattern
             Dall <- rowSums(Deach)
             ## variance terms
             if(se) {
               if(!edge) {
                 ## no edge correction
                 Veach <- do.call(density.ppp,
                                  append(list(x=uX, weights=dumm),
                                         VarPars))
               } else if(!diggle) {
                 ## edge correction e(u)
                 Veach <- do.call(density.ppp,
                                  append(list(x=uX, weights=dumm),
                                         VarPars))
                 Veach <- Veach * diggleX
               } else {
                 ## Diggle edge correction e(x_i)
                 Veach <- do.call(density.ppp,
                                  append(list(x=uX, weights=dumm * diggleX),
                                         VarPars))
               }
               Veach <- Veach * varconst
               Vall <- rowSums(Veach)
             }
           })
    ## .........................................
    ## compute probabilities/risks
    ## .........................................
    if(ntypes == 2 && casecontrol) {
      if(control.given || !case.given) {
        stopifnot(length(control) == 1)
        if(is.numeric(control)) {
          icontrol <- control <- as.integer(control)
          stopifnot(control %in% 1:2)
        } else if(is.character(control)) {
          icontrol <- match(control, types)
          if(is.na(icontrol)) stop(paste("No points have mark =", control))
        } else
          stop(paste("Unrecognised format for argument", sQuote("control")))
        if(!case.given)
          icase <- 3 - icontrol
      }
      if(case.given) {
        stopifnot(length(case) == 1)
        if(is.numeric(case)) {
          icase <- case <- as.integer(case)
          stopifnot(case %in% 1:2)
        } else if(is.character(case)) {
          icase <- match(case, types)
          if(is.na(icase)) stop(paste("No points have mark =", case))
        } else stop(paste("Unrecognised format for argument", sQuote("case")))
        if(!control.given) 
          icontrol <- 3 - icase
      }
      ## compute ......
      switch(at,
             pixels = {
               ## compute probability of case
               Dcase <- Deach[[icase]]
               pcase <- Dcase/Dall
               dodgy <- (Dall < tinythresh)
               ## correct small numerical errors
               pcase <- clamp01(pcase)
               ## trap NaN values, and similar
               nbg <- badvalues(pcase) | really(dodgy)
               if(any(nbg)) {
                 ## apply l'Hopital's rule:
                 ##     p(case) = 1{nearest neighbour is case}
                 distcase <- distmap(Y[[icase]], xy=pcase)
                 distcontrol <- distmap(Y[[icontrol]], xy=pcase)
                 closecase <- eval.im(as.integer(distcase < distcontrol))
                 pcase[nbg] <- closecase[nbg]
               }
               if(!relative) {
                 if(!se) {
                   result <- pcase
                 } else {
                   Vcase <- Veach[[icase]]
                   NUM <- eval.im(Vcase * (1-2*pcase) + Vall * pcase^2)
                   SE <- eval.im(sqrt(pmax(NUM, 0))/Dall)
                   result <- solist(estimate=pcase, SE=SE)
                 }
               } else {
                 rcase <- eval.im(ifelse(pcase < 1, pcase/(1-pcase), NA))
                 if(!se) {
                   result <- rcase
                 } else {
                   Vcase <- Veach[[icase]]
                   Vctrl <- Veach[[icontrol]]
                   Dctrl <- Deach[[icontrol]]
                   NUM <- eval.im(Vcase + Vctrl * rcase^2)
                   SE <- eval.im(sqrt(pmax(NUM, 0))/Dctrl)
                   result <- solist(estimate=rcase, SE=SE)
                 }
               }
             },
             points={
               ## compute probability of case
               pcase <- Deach[,icase]/Dall
               dodgy <- (Dall < tinythresh)
               ## correct small numerical errors
               pcase <- clamp01(pcase)
               ## trap NaN values
               if(any(nbg <- badvalues(pcase) | really(dodgy))) {
                 ## apply l'Hopital's rule
                 nntype <- imarks[nnwhich(X)]
                 pcase[nbg] <- as.integer(nntype[nbg] == icase)
               }
               if(!relative) {
                 if(!se) {
                   result <- pcase
                 } else {
                   NUM <- Veach[,icase] * (1-2*pcase) + Vall * pcase^2
                   SE <- sqrt(pmax(NUM, 0))/Dall
                   result <- list(estimate=pcase, SE=SE)
                 }
               } else {
                 rcase <- ifelse(pcase < 1, pcase/(1-pcase), NA)
                 if(!se) {
                   result <- rcase
                 } else {
                   NUM <- Veach[,icase] + Veach[,icontrol] * rcase^2
                   SE <- sqrt(pmax(NUM, 0))/Deach[,icontrol]
                   result <- list(estimate=rcase, SE=SE)
                 }
               }
             })
    } else {
      ## several types
      if(relative) {
        ## need 'control' type
        stopifnot(length(control) == 1)
        if(is.numeric(control)) {
          icontrol <- control <- as.integer(control)
          stopifnot(control %in% 1:ntypes)
        } else if(is.character(control)) {
          icontrol <- match(control, types)
          if(is.na(icontrol)) stop(paste("No points have mark =", control))
        } else
          stop(paste("Unrecognised format for argument", sQuote("control")))
      }
      switch(at,
             pixels={
               #' Ops.imagelist not yet working
               probs <- imagelistOp(Deach, Dall, "/")
               dodgy <- (Dall < tinythresh)
               ## correct small numerical errors
               probs <- as.solist(lapply(probs, clamp01))
               ## trap NaN values
               nbg <- lapply(probs, badvalues)
               nbg <- Reduce("|", nbg)
               nbg <- nbg | really(dodgy)
               if(any(nbg)) {
                 ## apply l'Hopital's rule
                 distX <- distmap(X, xy=Dall)
                 whichnn <- attr(distX, "index")
                 typenn <- eval.im(imarks[whichnn])
                 typennsub <- as.matrix(typenn)[nbg]
                 for(k in seq_along(probs)) 
                   probs[[k]][nbg] <- (typennsub == k)
               }
               if(!relative) {
                 if(!se) {
                   result <- probs
                 } else {
                   SE <- list()
                   for(i in 1:ntypes) {
                     NUM <- (Veach[[i]] * (1 - 2 * probs[[i]])
                             + Vall * probs[[i]]^2)
                     SE[[i]] <- eval.im(sqrt(pmax(NUM, 0))/Dall)
                   }
                   SE <- as.solist(SE)
                   names(SE) <- types
                   result <- list(estimate=probs, SE=SE)
                 }
               } else {
                 risks <- as.solist(lapply(probs,
                                           divideifpositive,
                                           d = probs[[icontrol]]))
                 if(!se) {
                   result <- risks
                 } else {
                   Vctrl <- Veach[[icontrol]]
                   Dctrl <- Deach[[icontrol]]
                   SE <- list()
                   for(i in 1:ntypes) {
                     NUM <- Veach[[i]] + Vctrl * risks[[i]]^2
                     SE[[i]] <- eval.im(sqrt(pmax(NUM, 0))/Dctrl)
                   }
                   SE <- as.solist(SE)
                   names(SE) <- types
                   result <- list(estimate=risks, SE=SE)
                 }
               }
             },
             points = {
               probs <- Deach/Dall
               dodgy <- (Dall < tinythresh)
               ## correct small numerical errors
               probs <- clamp01(probs)
               ## trap NaN values
               bad <- badvalues(probs) 
               badrow <- matrowany(bad) | really(dodgy)
               if(any(badrow)) {
                 ## apply l'Hopital's rule
                 typenn <- imarks[nnwhich(X)]
                 probs[badrow, ] <- (typenn == col(result))[badrow, ]
               }
               if(!relative) {
                 if(!se) {
                   result <- probs
                 } else {
                   NUM <- Veach * (1-2*probs) + Vall * probs^2
                   SE <- sqrt(pmax(NUM, 0))/Dall
                   result <- list(estimate=probs, SE=SE)
                }
               } else {
                 risks <- probs/probs[,icontrol]
                 if(!se) {
                   result <- risks
                 } else {
                   NUM <- Veach + Veach[,icontrol] * risks^2
                   NUM[,icontrol] <- 0
                   SE <- sqrt(pmax(NUM, 0))/Deach[,icontrol]
                   result <- list(estimate=risks, SE=SE)
                 }
               }
            })
    }
    attr(result, "sigma") <- sigma
    attr(result, "varcov") <- varcov
    return(result)
  }
  clamp01 <- function(x) {
    if(is.im(x)) return(eval.im(pmin(pmax(x, 0), 1)))
    return(pmin(pmax(x, 0), 1))
  }
  badvalues <- function(x) {
    if(is.im(x)) x <- as.matrix(x)
    return(!(is.finite(x) | is.na(x)))
  }
  really <- function(x) {
    if(is.im(x)) x <- as.matrix(x)
    x[is.na(x)] <- FALSE
    return(x)
  }
  
  reciprocal <- function(x) 1/x
  divideifpositive <- function(z, d) { eval.im(ifelse(d > 0, z/d, NA)) }
  
  relrisk.ppp
})
bw.stoyan <- function(X, co=0.15) {
  ## Stoyan's rule of thumb
  stopifnot(is.ppp(X))
  n <- npoints(X)
  W <- Window(X)
  a <- area(W)
  stoyan <- co/sqrt(5 * max(1,n)/a)
  return(stoyan)
}
bw.relrisk <- function(X, method="likelihood",
                       nh=spatstat.options("n.bandwidth"),
                       hmin=NULL, hmax=NULL, warn=TRUE) {
  stopifnot(is.ppp(X))
  stopifnot(is.multitype(X))
  ## rearrange in ascending order of x-coordinate (for C code)
  X <- X[fave.order(X$x)]
  ##
  Y <- split(X)
  ntypes <- length(Y)
  if(ntypes == 1)
    stop("Data contains only one type of points")
  n <- npoints(X)
  marx <- marks(X)
  method <- pickoption("method", method,
                       c(likelihood="likelihood",
                         leastsquares="leastsquares",
                         ls="leastsquares",
                         LS="leastsquares",
                         weightedleastsquares="weightedleastsquares",
                         wls="weightedleastsquares",
                         WLS="weightedleastsquares"))
  ## 
  if(method != "likelihood") {
    ## dummy variables for each type
    imarks <- as.integer(marx)
    if(ntypes == 2) {
      ## 1 = control, 2 = case
      indic <- (imarks == 2)
      y01   <- as.integer(indic)
    } else {
      indic <- matrix(FALSE, n, ntypes)
      indic[cbind(seq_len(n), imarks)] <- TRUE
      y01  <- indic * 1
    }
    X01 <- X %mark% y01
  }
  ## cross-validated bandwidth selection
  ## determine a range of bandwidth values
  if(is.null(hmin) || is.null(hmax)) {
    W <- Window(X)
    a <- area(W)
    d <- diameter(as.rectangle(W))
    ## Stoyan's rule of thumb applied to the least and most common types
    mcount <- table(marx)
    nmin <- max(1, min(mcount))
    nmax <- max(1, max(mcount))
    stoyan.low <- 0.15/sqrt(nmax/a)
    stoyan.high <- 0.15/sqrt(nmin/a)
    if(is.null(hmin)) 
      hmin <- max(minnndist(unique(X)), stoyan.low/5)
    if(is.null(hmax)) {
      hmax <- min(d/4, stoyan.high * 20)
      hmax <- max(hmax, hmin * 2)
    }
  } else stopifnot(hmin < hmax)
  ##
  h <- geomseq(from=hmin, to=hmax, length.out=nh)
  cv <- numeric(nh)
  ## 
  ## compute cross-validation criterion
  switch(method,
         likelihood={
           methodname <- "Likelihood"
           ## for efficiency, only compute the estimate of p_j(x_i)
           ## when j = m_i = mark of x_i.
           Dthis <- numeric(n)
           for(i in seq_len(nh)) {
             Dall <- density.ppp(X, sigma=h[i], at="points", edge=FALSE,
                                 sorted=TRUE)
             Deach <- density.splitppp(Y, sigma=h[i], at="points", edge=FALSE,
                                       sorted=TRUE)
             split(Dthis, marx) <- Deach
             pthis <- Dthis/Dall
             cv[i] <- -mean(log(pthis))
           }
         },
         leastsquares={
           methodname <- "Least Squares"
           for(i in seq_len(nh)) {
             phat <- Smooth(X01, sigma=h[i], at="points", leaveoneout=TRUE,
                            sorted=TRUE)
             phat <- as.matrix(phat)
             cv[i] <- mean((y01 - phat)^2)
           }
         },
         weightedleastsquares={
           methodname <- "Weighted Least Squares"
           ## need initial value of h from least squares
           h0 <- bw.relrisk(X, "leastsquares", nh=ceiling(nh/4))
           phat0 <- Smooth(X01, sigma=h0, at="points", leaveoneout=TRUE,
                           sorted=TRUE)
           phat0 <- as.matrix(phat0)
           var0 <- phat0 * (1-phat0)
           var0 <- pmax.int(var0, 1e-6)
           for(i in seq_len(nh)) {
             phat <- Smooth(X01, sigma=h[i], at="points", leaveoneout=TRUE,
                            sorted=TRUE)
             phat <- as.matrix(phat)
             cv[i] <- mean((y01 - phat)^2/var0)
           }
         })
  ## optimize
  result <- bw.optim(cv, h, 
                     hname="sigma", 
                     creator="bw.relrisk",
                     criterion=paste(methodname, "Cross-Validation"),
                     warnextreme=warn,
                     hargnames=c("hmin", "hmax"),
                     unitname=unitname(X))
  return(result)
}
which.max.im <- function(x) {
  .Deprecated("im.apply", "spatstat.geom",
              "which.max.im(x) is deprecated: use im.apply(x, which.max)")
  ans <- im.apply(x, which.max)
  return(ans)
}
 
     |