1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
|
#'
#' rhohat.R
#'
#' $Revision: 1.103 $ $Date: 2022/05/12 04:08:19 $
#'
#' Non-parametric estimation of a transformation rho(z) determining
#' the intensity function lambda(u) of a point process in terms of a
#' spatial covariate Z(u) through lambda(u) = rho(Z(u)).
#' More generally allows offsets etc.
#' Copyright (c) Adrian Baddeley 2015-2021
#' GNU Public Licence GPL >= 2.0
rhohat <- function(object, covariate, ...) {
UseMethod("rhohat")
}
rhohat.ppp <- rhohat.quad <-
function(object, covariate, ...,
baseline=NULL, weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local",
"decreasing", "increasing",
"piecewise"),
subset=NULL,
dimyx=NULL, eps=NULL,
n=512, bw="nrd0", adjust=1, from=NULL, to=NULL,
bwref=bw, covname, confidence=0.95, positiveCI, breaks=NULL) {
callstring <- short.deparse(sys.call())
smoother <- match.arg(smoother)
method <- match.arg(method)
X <- if(is.ppp(object)) object else object$data
if(missing(positiveCI))
positiveCI <- (smoother == "local")
if(missing(covname))
covname <- sensiblevarname(short.deparse(substitute(covariate)), "X")
if(is.null(adjust))
adjust <- 1
## Determine reference model (and validate arguments)
if(is.null(baseline)) {
## Uniform intensity
## WAS: model <- ppm(object ~1, subset=subset)
model <- X
reference <- "Lebesgue"
} else {
## Intensity proportional to baseline
model <- eval(substitute(
ppm(object ~ offset(log(baseline)), subset=SUBSET),
list(SUBSET=subset)))
reference <- "baseline"
}
modelcall <- NULL
if(is.character(covariate) && length(covariate) == 1) {
covname <- covariate
switch(covname,
x={
covariate <- function(x,y) { x }
},
y={
covariate <- function(x,y) { y }
},
stop("Unrecognised covariate name")
)
covunits <- unitname(X)
} else {
covunits <- NULL
}
W <- Window(X)
if(!is.null(subset)) W <- W[subset, drop=FALSE]
areaW <- area(W)
rhohatEngine(model, covariate, reference, areaW, ...,
subset=subset,
weights=weights,
method=method,
horvitz=horvitz,
smoother=smoother,
resolution=list(dimyx=dimyx, eps=eps),
evalCovarArgs=list(clip.predict=FALSE),
n=n, bw=bw, adjust=adjust, from=from, to=to,
bwref=bwref, covname=covname, covunits=covunits,
confidence=confidence,
positiveCI=positiveCI,
breaks=breaks,
modelcall=modelcall, callstring=callstring)
}
rhohat.ppm <- function(object, covariate, ...,
weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local",
"decreasing", "increasing",
"piecewise"),
subset=NULL,
dimyx=NULL, eps=NULL,
n=512, bw="nrd0", adjust=1, from=NULL, to=NULL,
bwref=bw, covname, confidence=0.95,
positiveCI, breaks=NULL) {
callstring <- short.deparse(sys.call())
smoother <- match.arg(smoother)
method <- match.arg(method)
if(missing(positiveCI))
positiveCI <- (smoother == "local")
if(missing(covname))
covname <- sensiblevarname(short.deparse(substitute(covariate)), "X")
if(is.null(adjust))
adjust <- 1
if("baseline" %in% names(list(...)))
warning("Argument 'baseline' ignored: not available for rhohat.ppm")
## validate model
model <- object
reference <- "model"
modelcall <- model$call
if(is.character(covariate) && length(covariate) == 1) {
covname <- covariate
switch(covname,
x={
covariate <- function(x,y) { x }
},
y={
covariate <- function(x,y) { y }
},
stop("Unrecognised covariate name")
)
covunits <- unitname(data.ppm(model))
} else {
covunits <- NULL
}
W <- Window(data.ppm(model))
if(!is.null(subset)) W <- W[subset, drop=FALSE]
areaW <- area(W)
rhohatEngine(model, covariate, reference, areaW, ...,
weights=weights,
method=method,
horvitz=horvitz,
smoother=smoother,
resolution=list(dimyx=dimyx, eps=eps),
evalCovarArgs=list(clip.predict=FALSE),
n=n, bw=bw, adjust=adjust, from=from, to=to,
bwref=bwref, covname=covname, covunits=covunits,
confidence=confidence, positiveCI=positiveCI,
breaks=breaks,
modelcall=modelcall, callstring=callstring)
}
rhohatEngine <- function(model, covariate,
reference=c("Lebesgue", "model", "baseline"),
volume,
...,
subset=NULL,
weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local",
"decreasing", "increasing",
"piecewise"),
resolution=list(),
evalCovarArgs=list(),
n=512, bw="nrd0", adjust=1, from=NULL, to=NULL,
bwref=bw, covname, covunits=NULL, confidence=0.95,
breaks=NULL,
modelcall=NULL, callstring="rhohat") {
reference <- match.arg(reference)
#' evaluate the covariate at data points and at pixels
stuff <- do.call(evalCovar,
c(list(model=model,
covariate=covariate,
subset=subset),
resolution,
evalCovarArgs))
# unpack
values <- stuff$values
# values at each data point
ZX <- values$ZX
lambdaX <- values$lambdaX
# values at each pixel
Zimage <- values$Zimage
lambdaimage <- values$lambdaimage # could be multiple images
# values at each pixel (for .ppp, .ppm) or quadrature point (for .lpp, .lppm)
Zvalues <- values$Zvalues
lambda <- values$lambda
## weights
if(!is.null(weights)) {
X <- as.ppp(stuff$X)
if(is.im(weights))
weights <- safelookup(weights, X)
else if(is.function(weights))
weights <- weights(X$x, X$y)
else if(is.numeric(weights) && is.vector(as.numeric(weights)))
check.nvector(weights, npoints(X), vname="weights")
else stop(paste(sQuote("weights"),
"should be a vector, a pixel image, or a function"))
}
# normalising constants
denom <- volume * (if(reference == "Lebesgue" || horvitz) 1 else mean(lambda))
# info
savestuff <- list(reference = reference,
horvitz = horvitz,
Zimage = Zimage,
lambdaimage = lambdaimage)
# calculate rho-hat
result <- rhohatCalc(ZX, Zvalues, lambda, denom,
...,
weights=weights,
lambdaX=lambdaX,
method=method,
horvitz=horvitz,
smoother=smoother,
n=n, bw=bw, adjust=adjust, from=from, to=to,
bwref=bwref, covname=covname, confidence=confidence,
breaks=breaks,
covunits=covunits,
modelcall=modelcall, callstring=callstring,
savestuff=savestuff)
return(result)
}
# basic calculation of rhohat from covariate values
rhohatCalc <- local({
interpolate <- function(x,y) {
if(inherits(x, "density") && missing(y))
approxfun(x$x, x$y, rule=2)
else
approxfun(x, y, rule=2)
}
## note: this function normalises the weights, like density.default
LocfitRaw <- function(x, ..., weights=NULL) {
if(is.null(weights)) weights <- 1
requireNamespace("locfit", quietly=TRUE)
do.call.matched(locfit::locfit.raw,
append(list(x=x, weights=weights), list(...)))
}
varlog <- function(obj,xx) {
## variance of log f-hat
stopifnot(inherits(obj, "locfit"))
if(!identical(obj$trans, exp))
stop("internal error: locfit object does not have log link")
## the following call should have band="local" but that produces NaN's
pred <- predict(obj, newdata=xx,
se.fit=TRUE, what="coef")
se <- pred$se.fit
return(se^2)
}
rhohatCalc <- function(ZX, Zvalues, lambda, denom, ...,
weights=NULL, lambdaX,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local",
"decreasing", "increasing",
"piecewise"),
n=512, bw="nrd0", adjust=1, from=NULL, to=NULL,
bwref=bw, covname, confidence=0.95,
breaks=NULL,
positiveCI=(smoother == "local"),
markovCI=TRUE,
covunits = NULL, modelcall=NULL, callstring=NULL,
savestuff=list()) {
method <- match.arg(method)
smoother <- match.arg(smoother)
## check availability of locfit package
if(smoother == "local" && !requireNamespace("locfit", quietly=TRUE)) {
warning(paste("In", paste0(dQuote(callstring), ":"),
"package", sQuote("locfit"), "is not available;",
"unable to perform local likelihood smoothing;",
"using kernel smoothing instead"),
call.=FALSE)
smoother <- "kernel"
}
## validate
stopifnot(is.numeric(ZX))
stopifnot(is.numeric(Zvalues))
stopifnot(is.numeric(lambda))
stopifnot(length(lambda) == length(Zvalues))
stopifnot(all(is.finite(lambda)))
check.1.real(denom)
##
if(horvitz) {
## data points will be weighted by reciprocal of model intensity
weights <- (weights %orifnull% 1)/lambdaX
}
## normalising constants
nX <- if(is.null(weights)) length(ZX) else sum(weights)
kappahat <- nX/denom
## limits
Zrange <- range(ZX, Zvalues)
if(is.null(from)) from <- Zrange[1]
if(is.null(to)) to <- Zrange[2]
if(from > Zrange[1] || to < Zrange[2])
stop(paste("In", paste0(dQuote(callstring), ":"),
"interval [from, to] =", prange(c(from,to)),
"does not contain the range of data values =",
prange(Zrange)),
call.=FALSE)
## critical constant for CI's
crit <- qnorm((1+confidence)/2)
percentage <- paste(round(100 * confidence), "%%", sep="")
CIblurb <- paste("pointwise", percentage, "confidence interval")
## estimate densities
switch(smoother,
kernel = {
## ............... kernel smoothing ......................
## reference density (normalised) for calculation
ghat <- density(Zvalues,weights=if(horvitz) NULL else lambda/sum(lambda),
bw=bwref,adjust=adjust,n=n,from=from,to=to, ...)
xxx <- ghat$x
ghatfun <- interpolate(ghat)
## relative density
switch(method,
ratio={
## compute ratio of smoothed densities
fhat <- unnormdensity(ZX,weights=weights,
bw=bw,adjust=adjust,
n=n,from=from, to=to, ...)
fhatfun <- interpolate(fhat)
Ghat.xxx <- denom * ghatfun(xxx)
yyy <- fhatfun(xxx)/Ghat.xxx
## compute variance approximation
sigma <- fhat$bw
weights2 <- if(is.null(weights)) NULL else weights^2
fstar <- unnormdensity(ZX,weights=weights2,
bw=bw,adjust=adjust/sqrt(2),
n=n,from=from, to=to, ...)
fstarfun <- interpolate(fstar)
const <- 1/(2 * sigma * sqrt(pi))
vvv <- const * fstarfun(xxx)/Ghat.xxx^2
},
reweight={
## weight Z values by reciprocal of reference
wt <- (weights %orifnull% 1)/(denom * ghatfun(ZX))
rhat <- unnormdensity(ZX, weights=wt, bw=bw,adjust=adjust,
n=n,from=from, to=to, ...)
rhatfun <- interpolate(rhat)
yyy <- rhatfun(xxx)
## compute variance approximation
sigma <- rhat$bw
rongstar <- unnormdensity(ZX, weights=wt^2,
bw=bw,adjust=adjust/sqrt(2),
n=n,from=from, to=to, ...)
rongstarfun <- interpolate(rongstar)
const <- 1/(2 * sigma * sqrt(pi))
vvv <- const * rongstarfun(xxx)
},
transform={
## probability integral transform
Gfun <- interpolate(ghat$x, cumsum(ghat$y)/sum(ghat$y))
GZX <- Gfun(ZX)
## smooth density on [0,1]
qhat <- unnormdensity(GZX,weights=weights,
bw=bw,adjust=adjust,
n=n, from=0, to=1, ...)
qhatfun <- interpolate(qhat)
## edge effect correction
one <- density(seq(from=0,to=1,length.out=512),
bw=qhat$bw, adjust=1,
n=n,from=0, to=1, ...)
onefun <- interpolate(one)
## apply to transformed values
Gxxx <- Gfun(xxx)
Dxxx <- denom * onefun(Gxxx)
yyy <- qhatfun(Gxxx)/Dxxx
## compute variance approximation
sigma <- qhat$bw
weights2 <- if(is.null(weights)) NULL else weights^2
qstar <- unnormdensity(GZX,weights=weights2,
bw=bw,adjust=adjust/sqrt(2),
n=n,from=0, to=1, ...)
qstarfun <- interpolate(qstar)
const <- 1/(2 * sigma * sqrt(pi))
vvv <- const * qstarfun(Gxxx)/Dxxx^2
})
vvvname <- "Variance of estimator"
vvvlabel <- paste("bold(Var)~hat(%s)", paren(covname), sep="")
sd <- sqrt(vvv)
if(!positiveCI) {
hi <- yyy + crit * sd
lo <- yyy - crit * sd
} else {
sdlog <- ifelse(yyy > 0, sd/yyy, 0)
sss <- exp(crit * sdlog)
hi <- yyy * sss
lo <- yyy / sss
if(markovCI) {
## truncate extremely large confidence intervals
## using Markov's Inequality
hi <- pmin(hi, yyy/(1-confidence))
}
}
},
local = {
## .................. local likelihood smoothing .......................
xlim <- c(from, to)
xxx <- seq(from, to, length=n)
## reference density
ghat <- LocfitRaw(Zvalues,
weights=if(horvitz) NULL else lambda,
xlim=xlim, ...)
ggg <- predict(ghat, xxx)
## relative density
switch(method,
ratio={
## compute ratio of smoothed densities
fhat <- LocfitRaw(ZX, weights=weights, xlim=xlim, ...)
fff <- predict(fhat, xxx)
yyy <- kappahat * fff/ggg
## compute approximation to variance of log rho-hat
varlogN <- 1/nX
vvv <- varlog(fhat, xxx) + varlogN
},
reweight={
## weight Z values by reciprocal of reference
wt <- (weights %orifnull% 1)/(denom * predict(ghat,ZX))
sumwt <- sum(wt)
rhat <- LocfitRaw(ZX, weights=wt, xlim=xlim, ...)
rrr <- predict(rhat, xxx)
yyy <- sumwt * rrr
## compute approximation to variance of log rho-hat
varsumwt <- mean(yyy /(denom * ggg)) * diff(xlim)
varlogsumwt <- varsumwt/sumwt^2
vvv <- varlog(rhat, xxx) + varlogsumwt
},
transform={
## probability integral transform
Gfun <- approxfun(xxx, cumsum(ggg)/sum(ggg), rule=2)
GZX <- Gfun(ZX)
## smooth density on [0,1], end effect corrected
qhat <- LocfitRaw(GZX, weights=weights, xlim=c(0,1), ...)
## apply to transformed values
Gxxx <- Gfun(xxx)
qqq <- predict(qhat, Gxxx)
yyy <- kappahat * qqq
## compute approximation to variance of log rho-hat
varlogN <- 1/nX
vvv <- varlog(qhat, Gxxx) + varlogN
})
vvvname <- "Variance of log of estimator"
vvvlabel <- paste("bold(Var)~log(hat(%s)", paren(covname), ")", sep="")
sdlog <- sqrt(vvv)
if(positiveCI) {
sss <- exp(crit * sdlog)
hi <- yyy * sss
lo <- yyy / sss
if(markovCI) {
## truncate extremely large confidence intervals
## using Markov's Inequality
hi <- pmin(hi, yyy/(1-confidence))
}
} else {
hi <- yyy * (1 + crit * sdlog)
lo <- yyy * (1 - crit * sdlog)
}
},
increasing = ,
decreasing = {
## .................. nonparametric maximum likelihood ............
if(is.null(weights)) weights <- rep(1, length(ZX))
if(method != "ratio")
warning(paste("Argument method =", sQuote(method),
"is ignored when smoother =", sQuote(smoother)))
#' observed (sorted)
oX <- order(ZX)
ZX <- ZX[oX]
weights <- weights[oX]
#' reference CDF
G <- ewcdf(Zvalues, lambda)
#' reference denominator ('area') at each observed value
if(smoother == "decreasing") {
areas <- denom * G(ZX)
} else {
areas <- denom * (1 - G(rev(ZX)))
weights <- rev(weights)
}
#' maximum upper sets algorithm
rho <- numeric(0)
darea <- diff(c(0, areas))
dcount <- weights
while(length(darea) > 0) {
u <- cumsum(dcount)/cumsum(darea)
if(any(bad <- !is.finite(u))) # divide by zero etc
u[bad] <- max(u[!bad], 0)
k <- which.max(u)
rho <- c(rho, rep(u[k], k))
darea <- darea[-(1:k)]
dcount <- dcount[-(1:k)]
}
rho <- c(rho, 0)
if(smoother == "increasing") rho <- rev(rho)
#' compute as a stepfun
rhofun <- stepfun(x = ZX, y=rho, right=TRUE, f=1)
#' evaluate on a grid
xlim <- c(from, to)
xxx <- seq(from, to, length=n)
yyy <- rhofun(xxx)
#'
vvv <- hi <- lo <- NULL
savestuff$rhofun <- rhofun
},
piecewise = {
## .................. piecewise constant ............
if(is.null(breaks)) {
breaks <- pretty(c(from, to))
} else {
stopifnot(is.numeric(breaks))
breaks <- exactCutBreaks(c(from, to), breaks)
}
if(method != "ratio") {
warning(paste("Argument method =", sQuote(method),
"is not implemented when smoother = 'piecewise';",
"replaced by method = 'ratio'"))
method <- "ratio"
}
## convert numerical covariate values to factor
cutZvalues <- cut(Zvalues, breaks=breaks)
cutZX <- cut(ZX, breaks=breaks)
## denominator
areas <- denom * tapplysum(lambda, list(cutZvalues))/sum(lambda)
## numerator
counts <- if(is.null(weights)) {
as.numeric(table(cutZX))
} else {
tapplysum(weights, list(cutZX))
}
## estimate of rho(z) for each band of z values
rhovals <- counts/areas
#' convert to a stepfun
rhofun <- stepfun(x = breaks, y=c(0, rhovals, 0))
#' evaluate on a grid
xlim <- c(from, to)
xxx <- seq(from, to, length=n)
yyy <- rhofun(xxx)
#' variance
vvvname <- "Variance of estimator"
vvvlabel <- paste("bold(Var)~hat(%s)", paren(covname), sep="")
varnum <- if(is.null(weights)) counts else tapplysum(weights^2, list(cutZX))
varvals <- varnum/areas^2
varfun <- stepfun(x = breaks, y=c(0, varvals, 0))
vvv <- varfun(xxx)
sd <- sqrt(vvv)
if(!positiveCI) {
hi <- yyy + crit * sd
lo <- yyy - crit * sd
} else {
sdlog <- ifelse(yyy > 0, sd/yyy, 0)
sss <- exp(crit * sdlog)
hi <- yyy * sss
lo <- yyy / sss
if(markovCI) {
## truncate extremely large confidence intervals
## using Markov's Inequality
hi <- pmin(hi, yyy/(1-confidence))
}
}
## pack up
savestuff$rhofun <- rhofun
savestuff$breaks <- breaks
})
## pack into fv object
df <- data.frame(xxx=xxx, rho=yyy, ave=kappahat)
names(df)[1] <- covname
desc <- c(paste("Covariate", covname),
"Estimated intensity",
"Average intensity")
parencov <- paren(covname)
labl <- c(covname,
paste0("hat(%s)", parencov),
"bar(%s)")
if(did.variance <- !is.null(vvv)) {
df <- cbind(df, data.frame(var=vvv, hi=hi, lo=lo))
desc <- c(desc,
vvvname,
paste("Upper limit of", CIblurb),
paste("Lower limit of", CIblurb))
labl <- c(labl,
vvvlabel,
paste0("%s[hi]", parencov),
paste0("%s[lo]", parencov))
}
rslt <- fv(df,
argu=covname,
ylab=substitute(rho(X), list(X=as.name(covname))),
valu="rho",
fmla= as.formula(paste(". ~ ", covname)),
alim=c(from, to),
labl=labl,
desc=desc,
unitname=covunits,
fname="rho",
yexp=substitute(rho(X), list(X=as.name(covname))))
if(did.variance) {
fvnames(rslt, ".") <- c("rho", "ave", "hi", "lo")
fvnames(rslt, ".s") <- c("hi", "lo")
} else fvnames(rslt, ".") <- c("rho", "ave")
## pack up
class(rslt) <- c("rhohat", class(rslt))
## add info
stuff <-
list(modelcall = modelcall,
callstring = callstring,
sigma = switch(smoother, kernel=sigma, local=NULL),
covname = paste(covname, collapse=""),
ZX = ZX,
lambda = lambda,
method = method,
smoother = smoother,
confidence = confidence,
positiveCI = positiveCI)
attr(rslt, "stuff") <- append(stuff, savestuff)
return(rslt)
}
rhohatCalc
})
## ........... end of 'rhohatCalc' .................................
print.rhohat <- function(x, ...) {
s <- attr(x, "stuff")
smoother <- s$smoother
method <- s$method
splat("Intensity function estimate (class rhohat)",
"for the covariate", s$covname)
switch(s$reference,
Lebesgue=splat("Function values are absolute intensities"),
baseline=splat("Function values are relative to baseline"),
model={
splat("Function values are relative to fitted model")
print(s$modelcall)
})
cat("Type of estimate: ")
switch(smoother,
kernel = ,
local = splat("Smooth function of covariate"),
increasing = splat("Increasing function of covariate"),
decreasing = splat("Decreasing function of covariate"),
piecewise = splat("Piecewise-constant function of covariate"),
splat("unknown smoother =", sQuote(smoother))
)
cat("Estimation method: ")
switch(smoother,
piecewise = splat("average intensity in sub-regions"),
increasing = ,
decreasing = splat("nonparametric maximum likelihood"),
kernel = {
switch(method,
ratio = splat("ratio of fixed-bandwidth kernel smoothers"),
reweight={
splat("fixed-bandwidth kernel smoother of weighted data")
},
transform={
splat("probability integral transform,",
"edge-corrected fixed bandwidth kernel smoothing",
"on [0,1]")
},
splat("Unknown method =", sQuote(s$method)))
if(isTRUE(s$horvitz))
splat("\twith Horvitz-Thompson weight")
splat("\tActual smoothing bandwidth sigma = ",
signif(s$sigma,5))
},
local = {
switch(method,
ratio = splat("ratio of local likelihood smoothers"),
reweight={
splat("local likelihood smoother of weighted data")
},
transform={
splat("probability integral transform followed by",
"local likelihood smoothing on [0,1]")
},
splat("Unknown method =", sQuote(s$method)))
if(isTRUE(s$horvitz))
splat("\twith Horvitz-Thompson weight")
})
if(!(smoother %in% c("increasing", "decreasing"))) {
positiveCI <- s$positiveCI %orifnull% (smoother == "local")
confidence <- s$confidence %orifnull% 0.95
splat("Pointwise", paste0(100 * confidence, "%"),
"confidence bands for rho(x)\n\t based on asymptotic variance of",
if(positiveCI) "log(rhohat(x))" else "rhohat(x)")
}
splat("Call:", s$callstring)
cat("\n")
NextMethod("print")
}
plot.rhohat <- function(x, ..., do.rug=TRUE) {
xname <- short.deparse(substitute(x))
force(x)
s <- attr(x, "stuff")
covname <- s$covname
asked.rug <- !missing(do.rug) && identical(rug, TRUE)
snam <- intersect(c("hi", "lo"), names(x))
if(length(snam) == 0) snam <- NULL
out <- do.call(plot.fv,
resolve.defaults(list(x=quote(x)), list(...),
list(main=xname, shade=snam)))
if(identical(list(...)$limitsonly, TRUE))
return(out)
if(do.rug) {
rugx <- ZX <- s$ZX
# check whether it's the default plot
argh <- list(...)
isfo <- unlist(lapply(argh, inherits, what="formula"))
if(any(isfo)) {
# a plot formula was given; inspect RHS
fmla <- argh[[min(which(isfo))]]
rhs <- rhs.of.formula(fmla)
vars <- variablesinformula(rhs)
vars <- vars[vars %in% c(colnames(x), ".x", ".y")]
if(length(vars) == 1 && vars %in% c(covname, ".x")) {
# expression in terms of covariate
rhstr <- as.character(rhs)[2]
dat <- list(ZX)
names(dat) <- vars[1]
rugx <- as.numeric(eval(parse(text=rhstr), dat))
} else {
if(asked.rug) warning("Unable to add rug plot")
rugx <- NULL
}
}
if(!is.null(rugx)) {
# restrict to x limits, if given
if(!is.null(xlim <- list(...)$xlim))
rugx <- rugx[rugx >= xlim[1] & rugx <= xlim[2]]
# finally plot the rug
if(length(rugx) > 0)
rug(rugx)
}
}
invisible(NULL)
}
predict.rhohat <- local({
predict.rhohat <- function(object, ..., relative=FALSE,
what=c("rho", "lo", "hi", "se")) {
trap.extra.arguments(..., .Context="in predict.rhohat")
what <- match.arg(what)
#' extract info
s <- attr(object, "stuff")
reference <- s$reference
#' check availability
if((what %in% c("lo", "hi", "se")) && !("hi" %in% names(object)))
stop("Standard error and confidence bands are not available in this object",
call.=FALSE)
#' convert to (linearly interpolated) function
x <- with(object, .x)
y <- if(what == "se") sqrt(object[["var"]]) else object[[what]]
fun <- approxfun(x, y, rule=2)
#' extract image(s) of covariate
Z <- s$Zimage
#' apply fun to Z
Y <- if(is.im(Z)) evalfun(Z, fun) else solapply(Z, evalfun, f=fun)
if(reference != "Lebesgue" && !relative) {
#' adjust to reference baseline
Lam <- s$lambdaimage # could be an image or a list of images
#' multiply Y * Lam (dispatch on 'Math' is not yet working)
netted <- is.linim(Y) || (is.solist(Y) && all(sapply(Y, is.linim)))
netted <- netted && requireNamespace("spatstat.linnet")
if(!netted) {
Y <- imagelistOp(Lam, Y, "*")
} else {
if(is.solist(Y)) Y <- as.linimlist(Y)
Y <- spatstat.linnet::LinimListOp(Lam, Y, "*")
}
}
return(Y)
}
evalfun <- function(X, f) {
force(f)
force(X)
if(is.linim(X) && requireNamespace("spatstat.linnet"))
return(spatstat.linnet::eval.linim(f(X)))
if(is.im(X)) return(eval.im(f(X)))
return(NULL)
}
predict.rhohat
})
as.function.rhohat <- function(x, ..., value=".y", extrapolate=TRUE) {
NextMethod("as.function")
}
simulate.rhohat <- function(object, nsim=1, ..., drop=TRUE) {
trap.extra.arguments(..., .Context="in simulate.rhohat")
lambda <- predict(object)
if(is.linim(lambda) || (is.solist(lambda) && all(sapply(lambda, is.linim)))) {
if(!requireNamespace("spatstat.linnet")) {
warning(paste("Cannot generate simulations on a network;",
"this requires the package 'spatstat.linnet'"),
call.=FALSE)
return(NULL)
}
result <- spatstat.linnet::rpoislpp(lambda, nsim=nsim, drop=drop)
} else {
result <- rpoispp(lambda, nsim=nsim, drop=drop)
}
return(result)
}
|