File: rmhmodel.ppm.R

package info (click to toggle)
r-cran-spatstat.core 2.4-4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,440 kB
  • sloc: ansic: 4,402; sh: 13; makefile: 5
file content (384 lines) | stat: -rw-r--r-- 12,686 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#
#  rmhmodel.ppm.R
#
#   convert ppm object into format palatable to rmh.default
#
#  $Revision: 2.65 $   $Date: 2022/01/03 05:37:32 $
#
#   .Spatstat.rmhinfo
#   rmhmodel.ppm()
#

.Spatstat.Rmhinfo <-
list(
     "Multitype Hardcore process" =
     function(coeffs, inte) {
       # hard core radii r[i,j]
       hradii <- inte$par[["hradii"]]
       return(list(cif='multihard',
                   par=list(hradii=hradii),
                   ntypes=ncol(hradii)))
     },
     "Lennard-Jones process" =
     function(coeffs, inte) {
       pa <- inte$interpret(coeffs,inte)$param
       sigma   <- pa[["sigma"]]
       epsilon <- pa[["epsilon"]]
       return(list(cif='lennard',
                   par=list(sigma=sigma, epsilon=epsilon),
                   ntypes=1))
     },
     "Fiksel process" =
     function(coeffs, inte) {
       hc <- inte$par[["hc"]]
       r  <- inte$par[["r"]]
       kappa <- inte$par[["kappa"]]
       a <- inte$interpret(coeffs,inte)$param$a
       return(list(cif='fiksel',
                   par=list(r=r,hc=hc,kappa=kappa,a=a),
                   ntypes=1))
     },
     "Diggle-Gates-Stibbard process" =
     function(coeffs, inte) {
       rho   <- inte$par[["rho"]]
       return(list(cif='dgs',
                   par=list(rho=rho),
                   ntypes=1))
     },
     "Diggle-Gratton process" =
     function(coeffs, inte) {
       kappa <- inte$interpret(coeffs,inte)$param$kappa
       delta <- inte$par[["delta"]]
       rho   <- inte$par[["rho"]]
       return(list(cif='diggra',
                   par=list(kappa=kappa,delta=delta,rho=rho),
                   ntypes=1))
     },
     "Hard core process" =
     function(coeffs, inte) {
       hc <- inte$par[["hc"]]
       return(list(cif='hardcore',
                   par=list(hc=hc),
                   ntypes=1))
     },
     "Geyer saturation process" =
     function(coeffs, inte) {
       gamma <- inte$interpret(coeffs,inte)$param$gamma
       r <- inte$par[["r"]]
       sat <- inte$par[["sat"]]
       return(list(cif='geyer',
                   par=list(gamma=gamma,r=r,sat=sat),
                   ntypes=1))
     },
     "Soft core process" =
     function(coeffs, inte) {
       kappa <- inte$par[["kappa"]]
       sigma <- inte$interpret(coeffs,inte)$param$sigma
       return(list(cif="sftcr",
                   par=list(sigma=sigma,kappa=kappa),
                   ntypes=1))
     },
     "Strauss process" =
     function(coeffs, inte) {
       gamma <- inte$interpret(coeffs,inte)$param$gamma
       r <- inte$par[["r"]]
       return(list(cif = "strauss",
                   par = list(gamma = gamma, r = r),
                   ntypes=1))
     },
     "Strauss - hard core process" =
     function(coeffs, inte) {
       gamma <- inte$interpret(coeffs,inte)$param$gamma
       r <- inte$par[["r"]]
       hc <- inte$par[["hc"]]
       return(list(cif='straush',
                   par=list(gamma=gamma,r=r,hc=hc),
                   ntypes=1))
     },
     "Triplets process" =
     function(coeffs, inte) {
       gamma <- inte$interpret(coeffs,inte)$param$gamma
       r <- inte$par[["r"]]
       return(list(cif = "triplets",
                   par = list(gamma = gamma, r = r),
                   ntypes=1))
     },
     "Penttinen process" =
     function(coeffs, inte) {
       gamma <- inte$interpret(coeffs,inte)$param$gamma
       r   <- inte$par[["r"]]
       return(list(cif='penttinen',
                   par=list(gamma=gamma, r=r),
                   ntypes=1))
     },
     "Multitype Strauss process" =
     function(coeffs, inte) {
       # interaction radii r[i,j]
       radii <- inte$par[["radii"]]
       # interaction parameters gamma[i,j]
       gamma <- (inte$interpret)(coeffs, inte)$param$gammas
       return(list(cif='straussm',
                   par=list(gamma=gamma,radii=radii),
                   ntypes=ncol(radii)))
     },
     "Multitype Strauss Hardcore process" =
     function(coeffs, inte) {
       # interaction radii r[i,j]
       iradii <- inte$par[["iradii"]]
       # hard core radii r[i,j]
       hradii <- inte$par[["hradii"]]
       # interaction parameters gamma[i,j]
       gamma <- (inte$interpret)(coeffs, inte)$param$gammas
       return(list(cif='straushm',
                   par=list(gamma=gamma,iradii=iradii,hradii=hradii),
                   ntypes=ncol(iradii)))
     },
     "Piecewise constant pairwise interaction process" =
     function(coeffs, inte) {
       r <- inte$par[["r"]]
       gamma <- (inte$interpret)(coeffs, inte)$param$gammas
       h <- stepfun(r, c(gamma, 1))
       return(list(cif='lookup', par=list(h=h),
                   ntypes=1))
     },
     "Area-interaction process" =
     function(coeffs, inte) {
       r <- inte$par[["r"]]
       eta <- (inte$interpret)(coeffs, inte)$param$eta
       return(list(cif='areaint', par=list(eta=eta,r=r), ntypes=1))
     },
     "hybrid Geyer process" =
     function(coeffs, inte) {
       r <- inte$par[["r"]]
       sat <- inte$par[["sat"]]
       gamma <- (inte$interpret)(coeffs,inte)$param$gammas
       return(list(cif='badgey',par=list(gamma=gamma,r=r,sat=sat), ntypes=1))
     },
     "Hybrid interaction"=
     function(coeffs, inte){
       # for hybrids, $par is a list of the component interactions
       interlist <- inte$par
       # check for Poisson components
       ispois <- unlist(lapply(interlist, is.poisson))
       if(all(ispois)) {
         # reduces to Poisson
         Z <- list(cif='poisson', par=list())
         return(Z)
       } else if(any(ispois)) {
         # remove Poisson components
         interlist <- interlist[!ispois]
       }
       # 
       N <- length(interlist)
       cifs <- character(N)
       pars <- vector(mode="list", length=N)
       ntyp <- integer(N)
       for(i in 1:N) {
         interI <- interlist[[i]]
         # forbid hybrids-of-hybrids - these should not occur anyway
         if(interI$name == "Hybrid interaction")
           stop("Simulation of a hybrid-of-hybrid interaction is not implemented")
         # get RMH mapping for I-th component
         siminfoI <- .Spatstat.Rmhinfo[[interI$name]]
         if(is.null(siminfoI))
           stop(paste("Simulation of a fitted", sQuote(interI$name),
                      "has not yet been implemented"),
                call.=FALSE)
         # nameI is the tag that identifies I-th component in hybrid
         nameI  <- names(interlist)[[i]]
         nameI. <- paste(nameI, ".", sep="")
         # find coefficients with prefix that exactly matches nameI.
         Cname  <- names(coeffs)
         prefixlength <- nchar(nameI.)
         Cprefix <- substr(Cname, 1, prefixlength)
         relevant <- (Cprefix == nameI.)
         # extract coefficients
         #   (there may be none, if this interaction is an 'offset')
         coeffsI <- coeffs[relevant]
         # remove the prefix so the coefficients are recognisable to 'siminfoI'
         if(any(relevant)) 
           names(coeffsI) <-
             substr(Cname[relevant], prefixlength+1, max(nchar(Cname)))
         # compute RMH info
         ZI <- siminfoI(coeffsI, interI)
         cifs[i] <- ZI$cif
         pars[[i]] <- ZI$par
         ntyp[i] <- ZI$ntypes
       }
       nt <- unique(ntyp[ntyp != 1])
       if(length(nt) > 1)
         stop(paste("Hybrid components have different numbers of types:",
                    commasep(nt)))
       if(N == 1) {
         # single cif: revert to original format: par is a list of parameters
         Z <- list(cif=cifs[1], par=pars[[1]], ntypes=ntyp)
       } else {
         # hybrid cif: par is a list of lists of parameters
         Z <- list(cif=cifs,    par=pars,      ntypes=ntyp)
       }
       return(Z)
     }
)


# OTHER MODELS not yet implemented:
#
#
#      interaction object           rmh.default 
#      ------------------           -----------
#
#           OrdThresh                <none>
#


rmhmodel.ppm <- function(model, w, ...,
                         verbose=TRUE, project=TRUE,
                         control=rmhcontrol(),
                         new.coef=NULL) {
  ## converts ppm object `model' into format palatable to rmh.default
  
  verifyclass(model, "ppm")
  argh <- list(...)

  if(!is.null(new.coef))
    model <- tweak.coefs(model, new.coef)
  
  ## Ensure the fitted model is valid
  ## (i.e. exists mathematically as a point process)
  if(!valid.ppm(model)) {
    if(project) {
      if(verbose)
        cat("Model is invalid - projecting it\n")
      model <- project.ppm(model, fatal=TRUE)
    } else stop("The fitted model is not a valid point process")
  }
    
  if(verbose)
    cat("Extracting model information...")
    
  ## Extract essential information
  Y <- summary(model, quick="no variances")

  if(Y$marked && !Y$multitype)
    stop("Not implemented for marked point processes other than multitype")

  if(Y$uses.covars && is.data.frame(model$covariates))
    stop(paste("This model cannot be simulated, because the",
               "covariate values were given as a data frame."))
    
  ## enforce defaults for `control'

  control <- rmhcontrol(control)

  ## adjust to peculiarities of model
    
  control <- rmhResolveControl(control, model)
    
  ########  Interpoint interaction
  if(Y$poisson) {
    Z <- list(cif="poisson",
              par=list())  # par is filled in later
  } else {
    ## First check version number of ppm object
    if(Y$antiquated) 
      stop(paste("This model was fitted by a very old version",
                 "of the package: spatstat", Y$version,
                 "; simulation is not possible.",
                 "Re-fit the model using your original code"))
    else if(Y$old)
      warning(paste("This model was fitted by an old version",
                    "of the package: spatstat", Y$version,
                    ". Re-fit the model using update.ppm",
                    "or your original code"))
    ## Extract the interpoint interaction object
    inte <- Y$entries$interaction
    ## Determine whether the model can be simulated using rmh
    siminfo <- .Spatstat.Rmhinfo[[inte$name]]
    if(is.null(siminfo))
      stop(paste("Simulation of a fitted", sQuote(inte$name),
                 "has not yet been implemented"))
      
    ## Get fitted model's canonical coefficients
    coeffs <- Y$entries$coef
    if(newstyle.coeff.handling(inte)) {
      ## extract only the interaction coefficients
      Vnames <- Y$entries$Vnames
      IsOffset <- Y$entries$IsOffset
      coeffs <- coeffs[Vnames[!IsOffset]]
    }
    ## Translate the model to the format required by rmh.default
    Z <- siminfo(coeffs, inte)
    if(is.null(Z))
      stop("The model cannot be simulated")
    else if(is.null(Z$cif))
      stop(paste("Internal error: no cif returned from .Spatstat.Rmhinfo"))
  }

  ## Don't forget the types
  if(Y$multitype && is.null(Z$types))
    Z$types <- levels(Y$entries$marks)
       
  ######## Window for result 
    
  if(missing(w) || is.null(w)) {
    ## check for outdated argument name 'win'
    if(!is.na(m <- match("win", names(argh)))) {
      warning("Argument 'win' to rmhmodel.ppm is deprecated; use 'w'")
      w <- argh[[m]]
      argh <- argh[-m]
    } else w <- Y$entries$data$window
  }

  Z$w <- w

  ######## Expanded window for simulation?

  covims <- if(Y$uses.covars) model$covariates[Y$covars.used] else NULL
    
  wsim <- rmhResolveExpansion(w, control, covims, "covariate")$wsim
      
  ###### Trend or Intensity ############

  if(verbose)
    cat("Evaluating trend...")
    
  if(Y$stationary) {
    ## first order terms (beta or beta[i]) are carried in Z$par
    beta <- as.numeric(Y$trend$value)
    Z$trend <- NULL
  } else {
    ## trend terms present
    ## all first order effects are subsumed in Z$trend
    beta <- if(!Y$marked) 1 else rep.int(1, length(Z$types))
    ## predict on window possibly larger than original data window
    Z$trend <- 
      if(wsim$type == "mask")
        predict(model, window=wsim, type="trend", locations=wsim)
      else 
        predict(model, window=wsim, type="trend")
  }
    
  Ncif <- length(Z$cif)
  if(Ncif == 1) {
    ## single interaction
    Z$par[["beta"]] <- beta
  } else {
    ## hybrid interaction
    if(all(Z$ntypes == 1)) {
      ## unmarked model: scalar 'beta' is absorbed in first cif
      absorb <- 1
    } else {
      ## multitype model: vector 'beta' is absorbed in a multitype cif
      absorb <- min(which(Z$ntypes > 1))
    }
    Z$par[[absorb]]$beta <- beta
    ## other cifs have par$beta = 1 
    for(i in (1:Ncif)[-absorb])
      Z$par[[i]]$beta <- rep.int(1, Z$ntypes[i])
  }
  if(verbose)
    cat("done.\n")
  Z <- do.call(rmhmodel, append(list(Z), argh))
  return(Z)
}