1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
#'
#' sdr.R
#'
#' Sufficient Dimension Reduction
#'
#' Matlab original: Yongtao Guan
#' Translated to R by: Suman Rakshit
#' Adapted for spatstat: Adrian Baddeley
#'
#' GNU Public Licence 2.0 || 3.0
#'
#' $Revision: 1.15 $ $Date: 2020/01/30 05:10:49 $
#'
sdr <- function(X, covariates, ...) {
UseMethod("sdr")
}
sdr.ppp <- local({
sdr.ppp <- function(X, covariates,
method=c("DR", "NNIR", "SAVE", "SIR", "TSE"),
Dim1=1, Dim2=1, predict=FALSE, ...) {
stopifnot(is.ppp(X))
method <- match.arg(method)
trap.extra.arguments(...)
#' ensure 'covariates' is a list of compatible images
if(!inherits(covariates, "imlist") && !all(sapply(covariates, is.im)))
stop("Argument 'covariates' must be a list of images")
nc <- length(covariates)
if(nc == 0)
stop("Need at least one covariate!")
if(nc < Dim1 + (method == "TSE") * Dim2)
stop(paste(if(method == "TSE") "Dim1 + Dim2" else "Dim1",
"must not exceed the number of covariates"),
call.=FALSE)
if(nc > 1 && !do.call(compatible, unname(covariates)))
covariates <- do.call(harmonise, covariates)
#' extract corresponding pixel values including NA's
Ypixval <- sapply(lapply(covariates, as.matrix), as.vector)
#' compute sample mean and covariance matrix
m <- colMeans(Ypixval, na.rm=TRUE)
V <- cov(Ypixval, use="complete")
#' evaluate each image at point data locations
YX <- sapply(covariates, safelook, Y=X)
#' apply precomputed standardisation
Zx <- t(t(YX) - m) %*% matrixinvsqrt(V)
#' ready
coordsX <- coords(X)
result <-
switch(method,
DR = calc.DR(COV=V, z=Zx, Dim=Dim1),
NNIR = calc.NNIR(COV=V, z=Zx, pos=coordsX, Dim=Dim1),
SAVE = calc.SAVE(COV=V, z=Zx, Dim=Dim1),
SIR = calc.SIR(COV=V, z=Zx ),
TSE = calc.TSE(COV=V, z=Zx, pos=coordsX, Dim1=Dim1, Dim2=Dim2)
)
#'
covnames <- names(covariates) %orifnull% paste0("Y", 1:nc)
dimnames(result$B) <- list(covnames, paste0("B", 1:ncol(result$B)))
if(method == "TSE") {
result$M1 <- namez(result$M1)
result$M2 <- namez(result$M2)
} else {
result$M <- namez(result$M)
}
if(predict) result$Y <- sdrPredict(covariates, result$B)
return(result)
}
safelook <- function(Z, Y, ...) { safelookup(Z, Y, ...) }
namez <- function(M, prefix="Z") {
dimnames(M) <- list(paste0(prefix, 1:nrow(M)),
paste0(prefix, 1:ncol(M)))
return(M)
}
sdr.ppp
})
sdrPredict <- function(covariates, B) {
if(!is.matrix(B)) {
if(is.list(B) && is.matrix(BB <- B$B)) B <- BB else
stop("B should be a matrix, or the result of a call to sdr()",
call.=FALSE)
}
if(!inherits(covariates, "imlist") && !all(sapply(covariates, is.im)))
stop("Argument 'covariates' must be a list of images")
stopifnot(nrow(B) == length(covariates))
result <- vector(mode="list", length=ncol(B))
for(j in seq_along(result)) {
cj <- as.list(B[,j])
Zj <- mapply("*", cj, covariates, SIMPLIFY=FALSE)
result[[j]] <- im.apply(Zj, sum)
}
names(result) <- colnames(B)
return(as.solist(result))
}
##............ DR (Directional Regression) ..........................
calc.DR <- function(COV, z, Dim){
## Description: Naive Directional Regression Method
## Input:
## COV - cov{X(s)}
## z - standardized X(s) on SPP locations
## Dim - the CS dimension
## Output:
## B - the estimated CS basis
## M - the kernel matrix
ss <- nrow(z)
ncov <- ncol(z)
## M1 <- (t(z) %*% z)/ss - diag(1,ncov)
M1 <- crossprod(z)/ss - diag(1,ncov)
M1 <- M1 %*% M1 # the SAVE kernel
covMean <- matrix(colMeans(z),ncol=1)
M2 <- covMean %*% t(covMean)
M3 <- M2 * (base::norm(covMean, type="2"))^2 # the SIR kernel
M2 <- M2 %*% M2 # the SIR-2 kernel
M <- (M1 + M2 + M3)/3 # the DR kernel
SVD <- svd(M)
B <- SVD$u[,1:Dim]
B <- matrixinvsqrt(COV) %*% B # back to original scale
return(list(B=B, M=M))
}
## ............ NNIR (Nearest Neighbor Inverse Regression) ...........
calc.NNIR <- function(COV, z, pos, Dim) {
## Description: Nearest Neighbor Inverse Regression
## Input:
## COV - cov{X(s)}
## z - standardized X(s) on SPP locations
## pos - the position of SPP events
## Dim - the CS dimension
## Output:
## B - the estimated CS basis
## M - the kernel matrix
ss <- nrow(z) # sample size
# ncov <- ncol(z) # predictor dimension
jj <- nnwhich(pos) # identify nearest neighbour of each point
dir <- z - z[jj, , drop=FALSE] # empirical direction
IM <- sumouter(dir) # inverse of kernel matrix: sum of outer(dir[i,], dir[i,])
M <- solve(IM/ss) # invert kernel matrix
SVD <- svd(M)
B <- matrixinvsqrt(COV) %*% SVD$u[, 1:Dim, drop=FALSE]
return(list(B=B, M=M))
}
## ........... SAVE (Sliced Average Variance Estimation) ...........
calc.SAVE <- function(COV, z, Dim){
## Description: Naive Directional Regression Method
## Input
## COV - cov{X(s)}
## z - standardized X(s) on SPP locations
## Dim - the central space dimension
## Value
## B - the estimated CS basis
## M - the kernel matrix
# ss <- nrow(z)
ncov <- ncol(z)
M <- diag(1,ncov) - cov(z)
M <- M %*% M
SVD <- svd(M)
B <- SVD$u[,1:Dim]
B <- matrixinvsqrt(COV) %*% B
return(list(B=B, M=M))
}
##.......... SIR (Sliced Inverse Regression) ......................
calc.SIR <- function(COV, z){
## Description: Naive Directional Regression Method
## Input:
## COV - cov{X(s)}
## z - standardized X(s) on SPP locations
## Output:
## B - the estimated CS basis
## M - the kernel matrix
covMean <- colMeans(z)
B <- matrixinvsqrt(COV) %*% covMean # do SIR estimation
B <- B/sqrt(sum(B^2)) # normalise to unit length
M <- covMean %*% t(covMean) # create kernel matrix
return(list(B=B, M=M))
}
## ............. TSE (Two-Step Estimation) ....................
calc.TSE <- function(COV, z, pos, Dim1, Dim2) {
## Description: A Two-Step Method
## Input:
## COV - cov{X(s)}
## z - standardized X(s) on SPP locations
## Dim1 - the S1 dimension
## Dim2 - the S2 dimension
## Output:
## B - the estimated CS basis. Its first Dim1 columns
## are estimating S1 and the remaining Dim2 columns are
## estimating S2. In case of null space, a zero vector is reported.
## M1 - the kernel matrix of DR
## M2 - the kernel matrix of NNIR, which might be subject
## to some change, depending on the results of M1.
# ss <- nrow(z) # sample size
ncov <- ncol(z) # predictor dimension
est1 <- calc.DR(COV, z, ncov) # do DR estimation
est2 <- calc.NNIR(COV, z, pos, ncov) # do NNIR estimation
M1 <- est1$M
M2 <- est2$M
if(Dim1 > 0) {
U <- svd(M1)$u
B1 <- U[ , 1:Dim1, drop=FALSE] # get S1 estimate
## Q <- diag(1, ncov) - B1 %*% solve(t(B1) %*% B1) %*% t(B1)
Q <- diag(1, ncov) - B1 %*% solve(crossprod(B1)) %*% t(B1)
# contract orthogonal basis
M2 <- Q %*% M2 %*% Q # do constrained NNIR
} else {
B1 <- matrix(0, ncov, 1)
}
if(Dim2 > 0) {
U <- svd(M2)$u # do SVD for possibly updated M2
B2 <- U[ , 1:Dim2, drop=FALSE] # get basis estimator
} else {
B2 <- matrix(0, ncov, 1)
}
B <- matrixinvsqrt(COV) %*% cbind(B1,B2)
return(list(B=B, M1=M1, M2=M2))
}
## ////////////////// ADDITIONAL FUNCTIONS /////////////////////
subspaceDistance <- function(B0,B1) {
## ======================================================== #
## Evaluate the distance between the two linear spaces S(B0) and S(B1).
## The measure used is the one proposed by Li et al. (2004).
## ======================================================== #
stopifnot(is.matrix(B0))
stopifnot(is.matrix(B1))
## Proj0 <- B0 %*% solve((t(B0) %*% B0)) %*% t(B0) # Proj matrix on S(B0)
Proj0 <- B0 %*% solve(crossprod(B0)) %*% t(B0) # Proj matrix on S(B0)
lam <- svd(B1) # check whether B1 is singular
U <- lam$u
D <- lam$d
# V <- lam$v
B2 <- U[, D > 1e-09] # keep non-singular directions
Proj1 <- B2 %*% solve((t(B2) %*% B2)) %*% t(B2) # Proj matrix on S(B.hat)
Svd <- svd(Proj0 - Proj1) # Do svd for P0-P1
dist <- max(abs(Svd$d)) # Get the maximum absolute svd value
return(dist)
}
dimhat <- function(M){
#' Description: Maximum Descent Estimator for CS Dim
#' Input:
#' M - the estimated kernel matrix
#' Output:
#' dimhat - the estimated CS dim (assume dim>0)
stopifnot(is.matrix(M))
ncov <- ncol(M) # predictor dimension
maxdim <- max((ncov-1), 5) # maximum structure dimension
SVD <- svd(M) # svd of kernel matrix
lam <- SVD$d
eps <- 1e-06
lam <- lam + rep(eps,ncov) # add ridge effect
lam1 <- lam[-ncov]
lam2 <- lam[-1]
dif <- lam1/lam2
dif <- dif[1 : maxdim] # the magnitude of drop
retval <- which.max(dif) # find Maximum Descent estimator
return(retval)
}
|