File: simulatekppm.R

package info (click to toggle)
r-cran-spatstat.core 2.4-4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,440 kB
  • sloc: ansic: 4,402; sh: 13; makefile: 5
file content (284 lines) | stat: -rw-r--r-- 9,552 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#'
#'    simulatekppm.R
#'
#'    simulate.kppm
#'
#'    $Revision: 1.9 $ $Date: 2022/04/06 08:51:41 $

simulate.kppm <- function(object, nsim=1, seed=NULL, ...,
                          window=NULL, covariates=NULL,
                          n.cond=NULL, w.cond=NULL,
                          verbose=TRUE, retry=10,
                          drop=FALSE) {
  starttime <- proc.time()
  check.1.integer(nsim)
  stopifnot(nsim >= 0)
  if(nsim == 0) return(simulationresult(list()))
  verbose <- verbose && (nsim > 1)
  check.1.real(retry)
  # .... copied from simulate.lm ....
  if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
    runif(1)
  if (is.null(seed))
    RNGstate <- get(".Random.seed", envir = .GlobalEnv)
  else {
    R.seed <- get(".Random.seed", envir = .GlobalEnv)
    set.seed(seed)
    RNGstate <- structure(seed, kind = as.list(RNGkind()))
    on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
  }
  
  ## ..................................
  ## determine window for simulation results
  if(!is.null(window)) {
    stopifnot(is.owin(window))
    win <- window
  } else {
    win <- as.owin(object)
  }
  ## ..................................
  ## conditional simulation 
  if(!is.null(n.cond)) {
    ## fixed number of points
    out <- condSimCox(object, nsim=nsim, seed=NULL, ..., 
                      window=win, covariates=covariates, 
                      n.cond=n.cond, w.cond=w.cond,
                      verbose=verbose, retry=retry, drop=drop)
    out <- timed(out, starttime=starttime)
    attr(out, "seed") <- RNGstate
    return(out)
  }

  ## ..................................
  # determine parameters
  mp <- as.list(object$modelpar)

  # parameter 'mu'
  # = parent intensity of cluster process
  # = mean log intensity of log-Gaussian Cox process
  
  if(is.null(covariates) && (object$stationary || is.null(window))) {
    # use existing 'mu' (scalar or image)
    mu <- object$mu
  } else {
    # recompute 'mu' using new data
    switch(object$clusters,
           Cauchy=,
           VarGamma=,
           Thomas=,
           MatClust={
             # Poisson cluster process
             kappa <- mp$kappa
             lambda <- predict(object, window=win, covariates=covariates)
             mu <- eval.im(lambda/kappa)
           },
           LGCP={
             # log-Gaussian Cox process
             sigma2 <- mp$sigma2
             lambda <- predict(object, window=win, covariates=covariates)
             mu <- eval.im(log(lambda) - sigma2/2)
           },
           stop(paste("Simulation of", sQuote(object$clusters),
                      "processes is not yet implemented"))
           )
  }

  # prepare data for execution
  out <- list()
  switch(object$clusters,
         Thomas={
           kappa <- mp$kappa
           sigma <- mp$sigma
           cmd <- expression(rThomas(kappa,sigma,mu,win, ...))
           dont.complain.about(kappa, sigma, mu)
         },
         MatClust={
           kappa <- mp$kappa
           r     <- mp$R
           cmd   <- expression(rMatClust(kappa,r,mu,win, ...))
           dont.complain.about(kappa, r)
         },
         Cauchy = {
           kappa <- mp$kappa
           omega <- mp$omega
           cmd   <- expression(rCauchy(kappa, omega, mu, win, ...))
           dont.complain.about(kappa, omega, mu)
         },
         VarGamma = {
           kappa  <- mp$kappa
           omega  <- mp$omega
           nu.ker <- object$covmodel$margs$nu.ker
           cmd    <- expression(rVarGamma(kappa, nu.ker, omega, mu, win, ...))
           dont.complain.about(kappa, nu.ker, omega, mu)
         },
         LGCP={
           sigma2 <- mp$sigma2
           alpha  <- mp$alpha
           cm <- object$covmodel
           model <- cm$model
           margs <- cm$margs
           param <- append(list(var=sigma2, scale=alpha), margs)
           #' 
           if(!is.im(mu)) {
             # model will be simulated in 'win'
             cmd <- expression(rLGCP(model=model, mu=mu, param=param,
                               ..., win=win))
             #' check that RandomFields package recognises parameter format
             rfmod <- try(rLGCP(model, mu=mu, param=param, win=win,
                              ..., modelonly=TRUE))
           } else {
             # model will be simulated in as.owin(mu), then change window
             cmd <- expression(rLGCP(model=model, mu=mu, param=param,
                               ...)[win])
             #' check that RandomFields package recognises parameter format
             rfmod <- try(rLGCP(model, mu=mu, param=param, 
                              ..., modelonly=TRUE))
           }
           #' suppress warnings from code checker
           dont.complain.about(model, mu, param)
           #' check that model is recognised
           if(inherits(rfmod, "try-error"))
             stop(paste("Internal error in simulate.kppm:",
                        "unable to build Random Fields model",
                        "for log-Gaussian Cox process"))
         })
  
  # run
  if(verbose) {
    cat(paste("Generating", nsim, "simulations... "))
    state <- list()
  }
  for(i in 1:nsim) {
    out[[i]] <- try(eval(cmd))
    if(verbose) state <- progressreport(i, nsim, state=state)
  }
  # detect failures
  if(any(bad <- unlist(lapply(out, inherits, what="try-error")))) {
    nbad <- sum(bad)
    gripe <- paste(nbad,
                   ngettext(nbad, "simulation was", "simulations were"),
                   "unsuccessful")
    if(verbose) splat(gripe)
    if(retry <= 0) {
      fate <- "returned as NULL"
      out[bad] <- list(NULL)
    } else {
      if(verbose) cat("Retrying...")
      ntried <- 0
      while(ntried < retry) {
        ntried <- ntried + 1
        for(j in which(bad))
          out[[j]] <- try(eval(cmd))
        bad <- unlist(lapply(out, inherits, what="try-error"))
        nbad <- sum(bad)
        if(nbad == 0) break
      }
      if(verbose) cat("Done.\n")
      fate <- if(nbad == 0) "all recomputed" else
              paste(nbad, "simulations still unsuccessful")
      fate <- paste(fate, "after", ntried,
                    ngettext(ntried, "further try", "further tries"))
    }
    warning(paste(gripe, fate, sep=": "))
  }
  if(verbose)
    cat("Done.\n")
  #' pack up
  out <- simulationresult(out, nsim, drop)
  out <- timed(out, starttime=starttime)
  attr(out, "seed") <- RNGstate
  return(out)
}

condSimCox <- function(object, nsim=1,
                       ..., window=NULL,
                       n.cond=NULL, w.cond=NULL,
                       giveup=1000, maxchunk=100,
                       verbose=TRUE, drop=FALSE) {
  stopifnot(is.kppm(object))
  shortcut <- isFALSE(object$isPCP)

  w.sim <- as.owin(window)
  fullwindow <- is.null(w.cond)
  if(fullwindow) {
    w.cond <- w.sim
    w.free <- NULL
  } else {
    stopifnot(is.owin(w.cond))
    w.free <- setminus.owin(w.sim, w.cond)
  }
  
  nremaining <- nsim
  ntried <- 0
  accept <- FALSE
  nchunk <- 1
  phistory <- mhistory <- numeric(0)
  results <- list()
  while(nremaining > 0) {
    ## increase chunk length
    nchunk <- min(maxchunk, giveup - ntried, 2 * nchunk)
    ## bite off next chunk of simulations
    if(shortcut) {
      lamlist <- simulate(object, nsim=nchunk,
                          Lambdaonly=TRUE,
                          ..., drop=FALSE, verbose=FALSE)
    } else {
      Xlist <- simulate(object, nsim=nchunk,
                        saveLambda=TRUE,
                        ..., drop=FALSE, verbose=FALSE)
      lamlist <- lapply(unname(Xlist), attr, which="Lambda", exact=TRUE)
    }
    ## compute acceptance probabilities
    lamlist <- lapply(lamlist, "[", i=w.sim, drop=FALSE, tight=TRUE)
    if(fullwindow) {
      mu <- sapply(lamlist, integral)
    } else {
      mu <- sapply(lamlist, integral, domain=w.cond)
    }
    p <- exp(n.cond * log(mu/n.cond) + n.cond - mu)
    phistory <- c(phistory, p)
    mhistory <- c(mhistory, mu)
    ## accept/reject
    accept <- (runif(length(p)) < p)
    if(any(accept)) {
      jaccept <- which(accept)
      if(length(jaccept) > nremaining)
        jaccept <- jaccept[seq_len(nremaining)]
      naccepted <- length(jaccept)
      if(verbose)
        splat("Accepted the",
              commasep(ordinal(ntried + jaccept)),
              ngettext(naccepted, "proposal", "proposals"))
      nremaining <- nremaining - naccepted
      for(j in jaccept) {
        lamj <- lamlist[[j]]
        if(min(lamj) < 0)
          lamj <- eval.im(pmax(lamj, 0))
        if(fullwindow) {
          Y <- rpoint(n.cond, lamj, win=w.sim, forcewin=TRUE)
        } else {
          lamj.cond <- lamj[w.cond, drop=FALSE, tight=TRUE]
          lamj.free <- lamj[w.free, drop=FALSE, tight=TRUE]
          Ycond <- rpoint(n.cond, lamj.cond, win=w.cond)
          Yfree <- rpoispp(lamj.free)
          Y <- superimpose(Ycond, Yfree, W=w.sim)
        }
        results <- append(results, list(Y))
      }
    }
    ntried <- ntried + nchunk
    if(ntried >= giveup && nremaining > 0) {
      message(paste("Gave up after", ntried,
                    "proposals with", nsim - nremaining, "accepted"))
      message(paste("Mean acceptance probability =",
                    signif(mean(phistory), 3)))
      break
    }
  }
  nresults <- length(results)
  results <- simulationresult(results, nresults, drop)
  attr(results, "history") <- data.frame(mu=mhistory, p=phistory)
  if(verbose && nresults == nsim)
    splat("Mean acceptance probability", signif(mean(phistory), 3))
  return(results)
}