1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
##
## twostage.R
##
## Two-stage Monte Carlo tests and envelopes
##
## $Revision: 1.18 $ $Date: 2022/04/06 07:49:20 $
##
bits.test <- function(X, ..., exponent=2, nsim=19,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate=FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose=TRUE) {
twostage.test(X, ..., exponent=exponent,
nsim=nsim, nsimsub=nsim, reuse=FALSE,
alternative=match.arg(alternative),
leaveout=leaveout, interpolate=interpolate,
savefuns=savefuns, savepatterns=savepatterns,
verbose=verbose,
testblurb="Balanced Independent Two-stage Test")
}
dg.test <- function(X, ..., exponent=2, nsim=19, nsimsub=nsim-1,
alternative=c("two.sided", "less", "greater"),
reuse=TRUE, leaveout=1, interpolate=FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose=TRUE) {
check.1.integer(nsim)
stopifnot(nsim >= 2)
if(!missing(nsimsub) && (nsimsub < 1 || !relatively.prime(nsim, nsimsub)))
stop("nsim and nsimsub must be relatively prime")
twostage.test(X, ..., exponent=exponent,
nsim=nsim, nsimsub=nsimsub, reuse=reuse,
alternative=match.arg(alternative),
leaveout=leaveout, interpolate=interpolate,
savefuns=savefuns, savepatterns=savepatterns,
verbose=verbose,
testblurb="Dao-Genton adjusted goodness-of-fit test")
}
twostage.test <- function(X, ..., exponent=2, nsim=19, nsimsub=nsim,
alternative=c("two.sided", "less", "greater"),
reuse=FALSE, leaveout=1, interpolate=FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose=TRUE, badXfatal=TRUE,
testblurb="Two-stage Monte Carlo test") {
Xname <- short.deparse(substitute(X))
alternative <- match.arg(alternative)
env.here <- sys.frame(sys.nframe())
Xismodel <- is.ppm(X) || is.kppm(X) || is.lppm(X) || is.slrm(X)
check.1.integer(nsim)
check.1.integer(nsimsub)
stopifnot(nsim >= 2)
stopifnot(nsimsub >= 2)
## first-stage p-value
if(verbose) cat("Applying first-stage test to original data... ")
tX <- envelopeTest(X, ...,
nsim=if(reuse) nsim else nsimsub,
alternative=alternative,
leaveout=leaveout,
interpolate=interpolate,
exponent=exponent,
savefuns=savefuns,
savepatterns=savepatterns || reuse,
verbose=FALSE, badXfatal=badXfatal,
envir.simul=env.here)
pX <- tX$p.value
## check special case
afortiori <- !interpolate && !reuse && (nsimsub < nsim) &&
(pX == (1/(nsim+1)) || pX == 1)
if(afortiori) {
## result is determined
padj <- pX
pY <- NULL
} else {
## result is not yet determined
if(!reuse) {
if(verbose) cat("Repeating first-stage test... ")
tXX <- envelopeTest(X, ...,
nsim=nsim, alternative=alternative,
leaveout=leaveout,
interpolate=interpolate,
exponent=exponent,
savefuns=savefuns, savepatterns=TRUE,
verbose=FALSE, badXfatal=badXfatal,
envir.simul=env.here)
## extract simulated patterns
Ylist <- attr(attr(tXX, "envelope"), "simpatterns")
} else {
Ylist <- attr(attr(tX, "envelope"), "simpatterns")
}
if(verbose) cat("Done.\n")
## apply same test to each simulated pattern
if(verbose) cat(paste("Running second-stage tests on",
nsim, "simulated patterns... "))
pY <- numeric(nsim)
for(i in 1:nsim) {
if(verbose) progressreport(i, nsim)
Yi <- Ylist[[i]]
## if X is a model, fit it to Yi. Otherwise the implicit model is CSR.
if(Xismodel) Yi <- update(X, Yi)
tYi <- envelopeTest(Yi, ...,
nsim=nsimsub, alternative=alternative,
leaveout=leaveout,
interpolate=interpolate,
exponent=exponent, savepatterns=TRUE,
verbose=FALSE, badXfatal=FALSE,
envir.simul=env.here)
pY[i] <- tYi$p.value
}
pY <- sort(pY)
## compute adjusted p-value
padj <- (1 + sum(pY <= pX))/(1+nsim)
}
# pack up
method <- tX$method
method <- c(testblurb,
paste("based on", method[1L]),
paste("First stage:", method[2L]),
method[-(1:2)],
if(afortiori) {
paren(paste("Second stage was omitted: p0 =", pX,
"implies p-value =", padj))
} else if(reuse) {
paste("Second stage: nested, ", nsimsub,
"simulations for each first-stage simulation")
} else {
paste("Second stage:", nsim, "*", nsimsub,
"nested simulations independent of first stage")
}
)
names(pX) <- "p0"
result <- structure(list(statistic = pX,
p.value = padj,
method = method,
data.name = Xname),
class="htest")
attr(result, "rinterval") <- attr(tX, "rinterval")
attr(result, "pX") <- pX
attr(result, "pY") <- pY
if(savefuns || savepatterns)
result <- hasenvelope(result, attr(tX, "envelope"))
return(result)
}
dg.envelope <- function(X, ..., nsim=19,
nsimsub=nsim-1,
nrank=1,
alternative=c("two.sided", "less", "greater"),
leaveout=1,
interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose=TRUE) {
twostage.envelope(X, ...,
nsim=nsim, nsimsub=nsimsub, reuse=TRUE, nrank=nrank,
alternative=match.arg(alternative),
leaveout=leaveout, interpolate=interpolate,
savefuns=savefuns, savepatterns=savepatterns,
verbose=verbose, testlabel="bits")
}
bits.envelope <- function(X, ..., nsim=19,
nrank=1,
alternative=c("two.sided", "less", "greater"),
leaveout=1,
interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose=TRUE) {
twostage.envelope(X, ...,
nsim=nsim, nsimsub=nsim, reuse=FALSE, nrank=nrank,
alternative=match.arg(alternative),
leaveout=leaveout, interpolate=interpolate,
savefuns=savefuns, savepatterns=savepatterns,
verbose=verbose, testlabel="bits")
}
twostage.envelope <- function(X, ..., nsim=19, nsimsub=nsim,
nrank=1,
alternative=c("two.sided", "less", "greater"),
reuse=FALSE,
leaveout=1,
interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose=TRUE, badXfatal=TRUE,
testlabel="twostage") {
# Xname <- short.deparse(substitute(X))
alternative <- match.arg(alternative)
env.here <- sys.frame(sys.nframe())
Xismodel <- is.ppm(X) || is.kppm(X) || is.lppm(X) || is.slrm(X)
check.1.integer(nsim)
check.1.integer(nsimsub)
stopifnot(nsim >= 2)
stopifnot(nsimsub >= 1)
############## first stage ##################################
if(verbose) cat("Applying first-stage test to original data... ")
tX <- envelopeTest(X, ...,
alternative=alternative,
leaveout=leaveout,
interpolate = interpolate,
nsim=if(reuse) nsim else nsimsub,
nrank=nrank,
exponent=Inf, savepatterns=TRUE, savefuns=TRUE,
verbose=FALSE, badXfatal=badXfatal,
envir.simul=env.here)
if(verbose) cat("Done.\n")
envX <- attr(tX, "envelope")
if(!reuse) {
if(verbose) cat("Repeating first-stage test... ")
tXX <- envelopeTest(X, ...,
alternative=alternative,
leaveout=leaveout,
interpolate = interpolate,
nsim=nsim, nrank=nrank,
exponent=Inf, savepatterns=TRUE, savefuns=TRUE,
verbose=FALSE, badXfatal=badXfatal,
envir.simul=env.here)
## extract simulated patterns
Ylist <- attr(attr(tXX, "envelope"), "simpatterns")
} else {
Ylist <- attr(attr(tX, "envelope"), "simpatterns")
}
if(verbose) cat("Done.\n")
############## second stage #################################
## apply same test to each simulated pattern
if(verbose) cat(paste("Running tests on", nsim, "simulated patterns... "))
pvalY <- numeric(nsim)
for(i in 1:nsim) {
if(verbose) progressreport(i, nsim)
Yi <- Ylist[[i]]
# if X is a model, fit it to Yi. Otherwise the implicit model is CSR.
if(Xismodel) Yi <- update(X, Yi)
tYi <- envelopeTest(Yi, ...,
alternative=alternative,
leaveout=leaveout,
interpolate = interpolate, save.interpolant = FALSE,
nsim=nsimsub, nrank=nrank,
exponent=Inf, savepatterns=TRUE,
verbose=FALSE, badXfatal=FALSE,
envir.simul=env.here)
pvalY[i] <- tYi$p.value
}
## Find critical deviation
if(!interpolate) {
## find critical rank 'l'
rankY <- pvalY * (nsimsub + 1)
twostage.rank <- orderstats(rankY, k=nrank)
if(verbose) cat(paste0(testlabel, ".rank"), "=", twostage.rank, fill=TRUE)
## extract deviation values from top-level simulation
simdev <- attr(tX, "statistics")[["sim"]]
## find critical deviation
twostage.crit <- orderstats(simdev, decreasing=TRUE, k=twostage.rank)
if(verbose) cat(paste0(testlabel, ".crit"), "=", twostage.crit, fill=TRUE)
} else {
## compute estimated cdf of t
fhat <- attr(tX, "density")[c("x", "y")]
fhat$z <- with(fhat, cumsum(y)/sum(y)) # 'within' upsets package checker
## find critical (second stage) p-value
pcrit <- orderstats(pvalY, k=nrank)
## compute corresponding upper quantile of estimated density of t
twostage.crit <- with(fhat, { min(x[z >= 1 - pcrit]) })
}
## make fv object, for now
refname <- if("theo" %in% names(envX)) "theo" else "mmean"
fname <- attr(envX, "fname")
result <- (as.fv(envX))[, c(fvnames(envX, ".x"),
fvnames(envX, ".y"),
refname)]
refval <- envX[[refname]]
##
newdata <- data.frame(hi=refval + twostage.crit,
lo=refval - twostage.crit)
newlabl <- c(makefvlabel(NULL, NULL, fname, "hi"),
makefvlabel(NULL, NULL, fname, "lo"))
alpha <- nrank/(nsim+1)
alphatext <- paste0(100*alpha, "%%")
newdesc <- c(paste("upper", alphatext, "critical boundary for %s"),
paste("lower", alphatext, "critical boundary for %s"))
switch(alternative,
two.sided = { },
less = {
newdata$hi <- Inf
newlabl[1L] <- "infinity"
newdesc[1L] <- "infinite upper limit"
},
greater = {
newdata$lo <- -Inf
newlabl[2L] <- "infinity"
newdesc[2L] <- "infinite lower limit"
})
result <- bind.fv(result, newdata, newlabl, newdesc)
fvnames(result, ".") <- rev(fvnames(result, "."))
fvnames(result, ".s") <- c("lo", "hi")
if(savefuns || savepatterns)
result <- hasenvelope(result, envX)
return(result)
}
|