File: twostage.R

package info (click to toggle)
r-cran-spatstat.core 2.4-4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,440 kB
  • sloc: ansic: 4,402; sh: 13; makefile: 5
file content (299 lines) | stat: -rw-r--r-- 12,285 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
##
##  twostage.R
##
##  Two-stage Monte Carlo tests and envelopes
##
##  $Revision: 1.18 $  $Date: 2022/04/06 07:49:20 $
##

bits.test <- function(X, ..., exponent=2, nsim=19,
                    alternative=c("two.sided", "less", "greater"),
                    leaveout=1, interpolate=FALSE,
                    savefuns=FALSE, savepatterns=FALSE,
                    verbose=TRUE) {
  twostage.test(X, ..., exponent=exponent,
                 nsim=nsim, nsimsub=nsim, reuse=FALSE, 
                 alternative=match.arg(alternative),
                 leaveout=leaveout, interpolate=interpolate,
                 savefuns=savefuns, savepatterns=savepatterns,
                 verbose=verbose,
		 testblurb="Balanced Independent Two-stage Test") 
}		    

dg.test <- function(X, ..., exponent=2, nsim=19, nsimsub=nsim-1,
                    alternative=c("two.sided", "less", "greater"),
                    reuse=TRUE, leaveout=1, interpolate=FALSE,
                    savefuns=FALSE, savepatterns=FALSE,
                    verbose=TRUE) {
  check.1.integer(nsim)
  stopifnot(nsim >= 2)
  if(!missing(nsimsub) && (nsimsub < 1 || !relatively.prime(nsim, nsimsub)))
    stop("nsim and nsimsub must be relatively prime")
  twostage.test(X, ..., exponent=exponent,
                 nsim=nsim, nsimsub=nsimsub, reuse=reuse, 
                 alternative=match.arg(alternative),
                 leaveout=leaveout, interpolate=interpolate,
                 savefuns=savefuns, savepatterns=savepatterns,
                 verbose=verbose,
		 testblurb="Dao-Genton adjusted goodness-of-fit test")
}		 
		    
twostage.test <- function(X, ..., exponent=2, nsim=19, nsimsub=nsim,
                    alternative=c("two.sided", "less", "greater"),
                    reuse=FALSE, leaveout=1, interpolate=FALSE,
                    savefuns=FALSE, savepatterns=FALSE,
                    verbose=TRUE, badXfatal=TRUE,
		    testblurb="Two-stage Monte Carlo test") {
  Xname <- short.deparse(substitute(X))
  alternative <- match.arg(alternative)
  env.here <- sys.frame(sys.nframe())
  Xismodel <- is.ppm(X) || is.kppm(X) || is.lppm(X) || is.slrm(X)
  check.1.integer(nsim)
  check.1.integer(nsimsub)
  stopifnot(nsim >= 2)
  stopifnot(nsimsub >= 2)
  ## first-stage p-value
  if(verbose) cat("Applying first-stage test to original data... ")
  tX <- envelopeTest(X, ...,
                     nsim=if(reuse) nsim else nsimsub,
                     alternative=alternative,
                     leaveout=leaveout,
                     interpolate=interpolate,
                     exponent=exponent,
                     savefuns=savefuns,
                     savepatterns=savepatterns || reuse,
                     verbose=FALSE, badXfatal=badXfatal,
                     envir.simul=env.here)
  pX <- tX$p.value
  ## check special case
  afortiori <- !interpolate && !reuse && (nsimsub < nsim) &&
               (pX == (1/(nsim+1)) || pX == 1)
  if(afortiori) {
    ## result is determined
    padj <- pX
    pY <- NULL
  } else {
    ## result is not yet determined
    if(!reuse) {
      if(verbose) cat("Repeating first-stage test... ")
      tXX <- envelopeTest(X, ...,
                          nsim=nsim, alternative=alternative,
                          leaveout=leaveout,
                          interpolate=interpolate,
                          exponent=exponent,
                          savefuns=savefuns, savepatterns=TRUE,
                          verbose=FALSE, badXfatal=badXfatal,
                          envir.simul=env.here)
      ## extract simulated patterns 
      Ylist <- attr(attr(tXX, "envelope"), "simpatterns")
    } else {
      Ylist <- attr(attr(tX, "envelope"), "simpatterns")
    }
    if(verbose) cat("Done.\n")
    ## apply same test to each simulated pattern
    if(verbose) cat(paste("Running second-stage tests on",
                          nsim, "simulated patterns... "))
    pY <- numeric(nsim)
    for(i in 1:nsim) {
      if(verbose) progressreport(i, nsim)
      Yi <- Ylist[[i]]
      ## if X is a model, fit it to Yi. Otherwise the implicit model is CSR.
      if(Xismodel) Yi <- update(X, Yi)
      tYi <- envelopeTest(Yi, ...,
                          nsim=nsimsub, alternative=alternative,
                          leaveout=leaveout,
                          interpolate=interpolate,
                          exponent=exponent, savepatterns=TRUE,
                          verbose=FALSE, badXfatal=FALSE,
                          envir.simul=env.here)
      pY[i] <- tYi$p.value
    }
    pY <- sort(pY)
    ## compute adjusted p-value
    padj <- (1 + sum(pY <= pX))/(1+nsim)
  }
  # pack up
  method <- tX$method
  method <- c(testblurb,
              paste("based on", method[1L]),
              paste("First stage:", method[2L]),
              method[-(1:2)],
              if(afortiori) {
                paren(paste("Second stage was omitted: p0 =", pX,
                            "implies p-value =", padj))
              } else if(reuse) {
                paste("Second stage: nested, ", nsimsub,
                      "simulations for each first-stage simulation")
              } else {
                paste("Second stage:", nsim, "*", nsimsub,
                      "nested simulations independent of first stage")
              }
              )
  names(pX) <- "p0"
  result <- structure(list(statistic = pX,
                           p.value = padj,
                           method = method,
                           data.name = Xname),
                      class="htest") 
  attr(result, "rinterval") <- attr(tX, "rinterval")
  attr(result, "pX") <- pX
  attr(result, "pY") <- pY
  if(savefuns || savepatterns)
    result <- hasenvelope(result, attr(tX, "envelope"))
  return(result)
}

dg.envelope <- function(X, ..., nsim=19,
                        nsimsub=nsim-1,
                        nrank=1,
                        alternative=c("two.sided", "less", "greater"),
                        leaveout=1,
                        interpolate = FALSE,
                        savefuns=FALSE, savepatterns=FALSE,
                        verbose=TRUE) {
  twostage.envelope(X, ...,
                    nsim=nsim, nsimsub=nsimsub, reuse=TRUE, nrank=nrank, 
                    alternative=match.arg(alternative),
                    leaveout=leaveout, interpolate=interpolate,
                    savefuns=savefuns, savepatterns=savepatterns,
                    verbose=verbose, testlabel="bits")
}

bits.envelope <- function(X, ..., nsim=19,
                          nrank=1,
                          alternative=c("two.sided", "less", "greater"),
                          leaveout=1,
                          interpolate = FALSE,
                          savefuns=FALSE, savepatterns=FALSE,
                          verbose=TRUE) {
  twostage.envelope(X, ...,
                    nsim=nsim, nsimsub=nsim, reuse=FALSE, nrank=nrank, 
                    alternative=match.arg(alternative),
                    leaveout=leaveout, interpolate=interpolate,
                    savefuns=savefuns, savepatterns=savepatterns,
                    verbose=verbose, testlabel="bits")
}

                          
twostage.envelope <- function(X, ..., nsim=19, nsimsub=nsim,
                              nrank=1,
                              alternative=c("two.sided", "less", "greater"),
                              reuse=FALSE, 
                              leaveout=1,
                              interpolate = FALSE,
                              savefuns=FALSE, savepatterns=FALSE,
                              verbose=TRUE, badXfatal=TRUE,
                              testlabel="twostage") {
  #  Xname <- short.deparse(substitute(X))
  alternative <- match.arg(alternative)
  env.here <- sys.frame(sys.nframe())
  Xismodel <- is.ppm(X) || is.kppm(X) || is.lppm(X) || is.slrm(X)
  check.1.integer(nsim)
  check.1.integer(nsimsub)
  stopifnot(nsim >= 2)
  stopifnot(nsimsub >= 1)
  ##############  first stage   ##################################
  if(verbose) cat("Applying first-stage test to original data... ")
  tX <- envelopeTest(X, ...,
                     alternative=alternative,
                     leaveout=leaveout,
                     interpolate = interpolate,
                     nsim=if(reuse) nsim else nsimsub,
                     nrank=nrank,
                     exponent=Inf, savepatterns=TRUE, savefuns=TRUE,
                     verbose=FALSE, badXfatal=badXfatal,
                     envir.simul=env.here)
  if(verbose) cat("Done.\n")
  envX <- attr(tX, "envelope")
  if(!reuse) {
    if(verbose) cat("Repeating first-stage test... ")
    tXX <- envelopeTest(X, ...,
                     alternative=alternative,
                     leaveout=leaveout,
                     interpolate = interpolate,
                     nsim=nsim, nrank=nrank,
                     exponent=Inf, savepatterns=TRUE, savefuns=TRUE,
                     verbose=FALSE, badXfatal=badXfatal,
                     envir.simul=env.here)
    ## extract simulated patterns 
    Ylist <- attr(attr(tXX, "envelope"), "simpatterns")
  } else {
    Ylist <- attr(attr(tX, "envelope"), "simpatterns")
  }
  if(verbose) cat("Done.\n")

  ##############  second stage   #################################
  ## apply same test to each simulated pattern
  if(verbose) cat(paste("Running tests on", nsim, "simulated patterns... "))
  pvalY <- numeric(nsim)
  for(i in 1:nsim) {
    if(verbose) progressreport(i, nsim)
    Yi <- Ylist[[i]]
    # if X is a model, fit it to Yi. Otherwise the implicit model is CSR.
    if(Xismodel) Yi <- update(X, Yi)
    tYi <- envelopeTest(Yi, ...,
                        alternative=alternative,
                        leaveout=leaveout,
                        interpolate = interpolate, save.interpolant = FALSE,
                        nsim=nsimsub, nrank=nrank,
                        exponent=Inf, savepatterns=TRUE,
                        verbose=FALSE, badXfatal=FALSE,
                        envir.simul=env.here)
    pvalY[i] <- tYi$p.value 
  }
  ## Find critical deviation
  if(!interpolate) {
    ## find critical rank 'l'
    rankY <- pvalY * (nsimsub + 1)
    twostage.rank <- orderstats(rankY, k=nrank)
    if(verbose) cat(paste0(testlabel, ".rank"), "=", twostage.rank, fill=TRUE)
    ## extract deviation values from top-level simulation
    simdev <- attr(tX, "statistics")[["sim"]]
    ## find critical deviation
    twostage.crit <- orderstats(simdev, decreasing=TRUE, k=twostage.rank)
    if(verbose) cat(paste0(testlabel, ".crit"), "=", twostage.crit, fill=TRUE)
  } else {
    ## compute estimated cdf of t
    fhat <- attr(tX, "density")[c("x", "y")]
    fhat$z <- with(fhat, cumsum(y)/sum(y))  # 'within' upsets package checker
    ## find critical (second stage) p-value
    pcrit <- orderstats(pvalY, k=nrank)
    ## compute corresponding upper quantile of estimated density of t
    twostage.crit <- with(fhat, { min(x[z >= 1 - pcrit]) })
  }
  ## make fv object, for now
  refname <- if("theo" %in% names(envX)) "theo" else "mmean"
  fname <- attr(envX, "fname")
  result <- (as.fv(envX))[, c(fvnames(envX, ".x"),
                            fvnames(envX, ".y"),
                            refname)]
  refval <- envX[[refname]]
  ## 
  newdata <- data.frame(hi=refval + twostage.crit,
                        lo=refval - twostage.crit)
  newlabl <- c(makefvlabel(NULL, NULL, fname, "hi"),
               makefvlabel(NULL, NULL, fname, "lo"))
  alpha <- nrank/(nsim+1)
  alphatext <- paste0(100*alpha, "%%")
  newdesc <- c(paste("upper", alphatext, "critical boundary for %s"),
               paste("lower", alphatext, "critical boundary for %s"))
  switch(alternative,
         two.sided = { },
         less = {
           newdata$hi <- Inf
           newlabl[1L] <- "infinity"
           newdesc[1L] <- "infinite upper limit"
         },
         greater = {
           newdata$lo <- -Inf
           newlabl[2L] <- "infinity"
           newdesc[2L] <- "infinite lower limit"
         })
  result <- bind.fv(result, newdata, newlabl, newdesc)
  fvnames(result, ".") <- rev(fvnames(result, "."))
  fvnames(result, ".s") <- c("lo", "hi")
  if(savefuns || savepatterns)
    result <- hasenvelope(result, envX)
  return(result)
}