File: varblock.R

package info (click to toggle)
r-cran-spatstat.core 2.4-4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,440 kB
  • sloc: ansic: 4,402; sh: 13; makefile: 5
file content (163 lines) | stat: -rw-r--r-- 5,694 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#
#   varblock.R
#
#   Variance estimation using block subdivision
#
#   $Revision: 1.22 $  $Date: 2022/01/04 05:30:06 $
#

varblock <- local({

  getrvalues <- function(z) { with(z, .x) }

  stepsize <- function(z) { mean(diff(z)) } 
  
  dofun <- function(domain, fun, Xpp, ...) { fun(Xpp, ..., domain=domain) }

  varblock <- function(X, fun=Kest,
                       blocks=quadrats(X, nx=nx, ny=ny), ..., 
                       nx=3, ny=nx,
                       confidence=0.95) {
    stopifnot(is.ppp(X))
    stopifnot(is.tess(blocks))
    stopifnot(is.function(fun) || is.character(fun))
    if(is.character(fun)) 
      fun <- get(fun, mode="function")
    ## validate confidence level
    stopifnot(confidence > 0.5 && confidence < 1)
    alpha <- 1 - confidence
    probs <- c(alpha/2, 1-alpha/2)
    ## determine whether 'fun' has an argument called 'domain'
    canrestrict <- ("domain" %in% names(formals(fun))) ||
                   samefunction(fun, pcf) ||
                   samefunction(fun, Lest)
    ## check there's at least one point in each block
    Y <- split(X, blocks)
    nums <- sapply(Y, npoints)
    blockok <- (nums > 0)
    if(some.zeroes <- any(!blockok)) 
      warning("Some tiles contain no data: they are discarded")
    if(!canrestrict) {
      ## divide data into disjoint blocks
      if(some.zeroes)
        Y <- Y[blockok]
      n <- length(Y)
      if(n <= 1) stop("Need at least 2 blocks")
      ## apply 'fun' to each block
      if(any(c("r", "breaks") %in% names(list(...)))) {
        ## r vector specified
        fX <- fun(X, ...)
        z <- lapply(Y, fun, ...)
      } else {
        ## need to ensure compatible fv objects
        z <- lapply(Y, fun, ...)
        rlist <- lapply(z, getrvalues)
        rmax <- min(sapply(rlist, max))
        rstep <- min(sapply(rlist, stepsize))
        r <- seq(0, rmax, by=rstep)
        z <- lapply(Y, fun, ..., r=r)
        fX <- fun(X, ..., r=r)
      }
    } else {
      ## use 'domain' argument of 'fun' to compute contributions from each tile
      B <- tiles(blocks)
      if(some.zeroes)
        B <- B[blockok]
      n <- length(B)
      if(any(c("r", "breaks") %in% names(list(...)))) {
        ## r vector specified
        fX <- fun(X, ...)
        z <- lapply(B, dofun, ..., fun=fun, Xpp=X)
      } else {
        ## need to ensure compatible fv objects
        z <- lapply(B, dofun, ..., fun=fun, Xpp=X)
        rlist <- lapply(z, getrvalues)
        rmax <- min(sapply(rlist, max))
        rstep <- min(sapply(rlist, stepsize))
        r <- seq(0, rmax, by=rstep)
        z <- lapply(B, dofun, ..., fun=fun, Xpp=X, r=r)
        fX <- fun(X, ..., r=r)
      }
    }
    ## find columns that are common to all estimates
    zzz <- reconcile.fv(append(list(fX), z))
    fX <- zzz[[1]]
    z <- zzz[-1]
    ## sample mean
    m <- meanlistfv(z)
    ## sample variance
    sqdev <- lapply(z, sqdev.fv, m=m)
    v <- meanlistfv(sqdev)
    v <- eval.fv(v * n/(n-1), dotonly=FALSE)
    ## sample standard deviation
    sd <- eval.fv(sqrt(v), dotonly=FALSE)
    ## upper and lower limits
    sem <- eval.fv(sd/sqrt(n), dotonly=FALSE)
    zcrit <- qnorm(probs)
    lower <- eval.fv(m + zcrit[1] * sem, dotonly=FALSE)
    upper <- eval.fv(m + zcrit[2] * sem, dotonly=FALSE)
    ## rebadge
    fva <- .Spatstat.FvAttrib
    fva <- fva[fva %in% names(attributes(fX))]
    attributes(m)[fva] <- attributes(v)[fva] <- attributes(sd)[fva] <- 
        attributes(upper)[fva] <- attributes(lower)[fva] <- attributes(fX)[fva]
    m <- prefixfv(m, "mean", "sample mean of", "bold(mean)~")
    v <- prefixfv(v, "var", "estimated variance of", "bold(var)~")
    sd <- prefixfv(sd, "sd", "estimated standard deviation of", "bold(sd)~")
    CItext <- paste(c("lower", "upper"),
                    paste0(100 * confidence, "%%"),
                    "CI limit for")
    lower <- prefixfv(lower, "lo", CItext[1], "bold(lo)~")
    upper <- prefixfv(upper, "hi", CItext[2], "bold(hi)~")
    ## tack together 
    out <- cbind(fX,m,v,sd,upper,lower)
    ## restrict r domain
    bad <- matrowall(!is.finite(as.matrix(as.data.frame(out))))
    rmax <- max(getrvalues(out)[!bad])
    alim <- c(0, rmax)
    if(!canrestrict) alim <- intersect.ranges(attr(out, "alim"), alim)
    attr(out, "alim") <- alim
    ## sensible default plot formula
    ybase <- fvnames(fX, ".y")
    xname <- fvnames(fX, ".x")
    tname <- intersect("theo", fvnames(fX, "."))
    fvnames(out, ".y") <- yname <- paste0("mean", ybase)
    fvnames(out, ".s") <- snames <- paste0(c("lo", "hi"), ybase)
    fvnames(out, ".") <- c(yname, tname, snames)
    attr(out, "fmla") <- paste(". ~ ", xname)
    return(out)
  }
  
  sqdev.fv <- function(x,m){ eval.fv((x-m)^2, dotonly=FALSE) }
  
  varblock
})


meanlistfv <- local({

  getYmatrix <- function(x, yn=ynames) { as.matrix(as.data.frame(x)[,yn]) }

  meanlistfv <- function(z, ...) {
    ## compute sample mean of a list of fv objects
    if(!is.list(z) || !all(unlist(lapply(z, is.fv))))
      stop("z should be a list of fv objects")
    if(!do.call(compatible, unname(z)))
      stop("Objects are not compatible")
    result <- template <- z[[1]]
    ## extract each object's function values as a matrix
    ynames <- fvnames(template, "*")
    matlist <- unname(lapply(z, getYmatrix, yn=ynames))
    ## stack matrices into an array
    y <- do.call(abind, append(matlist, list(along=3)))
    ## take mean 
    ymean <- apply(y, 1:2, mean, ...)
    result[,ynames] <- ymean
    return(result)
  }

  meanlistfv
})