1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
# Variance-covariance matrix for mppm objects
#
# $Revision: 1.23 $ $Date: 2021/12/29 07:50:32 $
#
#
vcov.mppm <- local({
errhandler <- function(whinge, err) {
switch(err,
fatal=stop(whinge),
warn={
warning(whinge)
return(NA)
},
null= return(NULL),
stop(paste("Unrecognised option: err=", dQuote(err))))
}
vcov.mppm <- function(object, ..., what="vcov", err="fatal") {
what <- match.arg(what,
c("vcov", "corr", "fisher", "Fisher", "internals", "all"))
if(what == "Fisher") what <- "fisher"
if(is.poisson.mppm(object) && object$Fit$fitter == "glm")
return(vcmPois(object, ..., what=what, err=err))
return(vcmGibbs(object, ..., what=what, err=err))
}
vcmPois <- function(object, ..., what, err,
nacoef.action=c("warn", "fatal", "silent"),
new.coef=NULL
) {
#' legacy algorithm for Poisson case
#' detect NA coefficients
if(missing(nacoef.action) && !missing(err) && !is.null(err)) {
nacoef.action <- err
} else {
nacoef.action <- match.arg(nacoef.action)
}
if(!all(is.finite(coef(object)))) {
gripe <- "Cannot compute variance; some coefficients are NA, NaN or Inf"
switch(nacoef.action,
fatal = stop(gripe, call.=FALSE),
warn = warning(gripe, call.=FALSE),
silent = {})
return(NULL)
}
#' get to work
gf <- object$Fit$FIT
gd <- object$Fit$moadf
wt <- gd$.mpl.W
fo <- object$trend
if(is.null(fo)) fo <- (~1)
mof <- model.frame(fo, gd)
mom <- model.matrix(fo, mof)
momnames <- dimnames(mom)[[2]]
## fitted intensity
if(!is.null(new.coef) && inherits(gf, c("gam", "lme"))) {
warn.once("vcovGAMnew", "'new.coef' is not supported by vcov.mppm for GAM or LME models; ignored")
new.coef <- NULL
}
fi <- if(is.null(new.coef)) fitted(gf) else GLMpredict(gf, gd, new.coef, changecoef=TRUE, type="response")
fisher <- sumouter(mom, fi * wt)
dimnames(fisher) <- list(momnames, momnames)
switch(what,
fisher = { return(fisher) },
vcov = {
vc <- try(solve(fisher), silent=(err == "null"))
if(inherits(vc, "try-error"))
return(errhandler("Fisher information is singular", err))
else
return(vc)
},
corr={
co <- try(solve(fisher), silent=(err == "null"))
if(inherits(co, "try-error"))
return(errhandler("Fisher information is singular", err))
sd <- sqrt(diag(co))
return(co / outer(sd, sd, "*"))
})
}
vcmGibbs <- function(object, ..., what, err,
matrix.action=c("warn", "fatal", "silent"),
gam.action=c("warn", "fatal", "silent"),
logi.action=c("warn", "fatal", "silent"),
nacoef.action=c("warn", "fatal", "silent"),
new.coef=NULL
) {
if(!missing(err)) {
if(err == "null") err <- "silent"
matrix.action <-
if(missing(matrix.action)) err else match.arg(matrix.action)
gam.action <- if(missing(gam.action)) err else match.arg(gam.action)
logi.action <- if(missing(logi.action)) err else match.arg(logi.action)
nacoef.action <- if(missing(nacoef.action)) err else match.arg(nacoef.action)
} else {
matrix.action <- match.arg(matrix.action)
gam.action <- match.arg(gam.action)
logi.action <- match.arg(logi.action)
nacoef.action <- match.arg(nacoef.action)
}
#' detect NA coefficients
if(!all(is.finite(as.matrix(coef(object))))) {
gripe <- "Cannot compute variance; some coefficients are NA, NaN or Inf"
switch(nacoef.action,
fatal = stop(gripe, call.=FALSE),
warn = warning(gripe, call.=FALSE),
silent = {})
return(NULL)
}
#' extract stuff from fitted model
Inter <- object$Inter
interaction <- Inter$interaction
itags <- Inter$itags
Vnamelist <- object$Fit$Vnamelist
Isoffsetlist <- object$Fit$Isoffsetlist
glmdata <- object$Fit$moadf
fitter <- object$Fit$fitter
fitobj <- object$Fit$FIT
#' compute fitted intensity
if(is.null(new.coef)) {
fi <- fitted(fitobj)
} else if(fitter != "glm") {
warn.once("vcovMppmGAMnew", "'new.coef' is not supported by vcov.mppm for GAM or LME models; ignored")
new.coef <- NULL
fi <- fitted(fitobj)
} else {
fi <- GLMpredict(fitobj, glmdata, new.coef, changecoef=TRUE, type="response")
}
#' initialise
cnames <- names(fixed.effects(object))
nc <- length(cnames)
A2 <- A3 <- matrix(0, nc, nc, dimnames=list(cnames, cnames))
#' (1) Compute matrix A1 directly
glmsub <- glmdata$.mpl.SUBSET
wt <- glmdata$.mpl.W
mom <- model.matrix(object)
lam <- unlist(fitted(object, new.coef=new.coef))
A1 <- sumouter(mom, lam * wt * glmsub)
#' (2) compute matrices A2 and A3 for submodels
#' compute submodels
subs <- subfits(object, what="basicmodels", new.coef=new.coef)
n <- length(subs)
#' identify the (unique) active interaction in each row
activeinter <- active.interactions(object)
## compute A2 and A3 for each submodel
guts <- lapply(subs,
vcov,
what="internals",
matrix.action=matrix.action,
gam.action=gam.action,
logi.action=logi.action,
dropcoef=TRUE,
...)
a2 <- lapply(guts, getElement, name="A2")
a3 <- lapply(guts, getElement, name="A3")
#' (3) Determine map from interaction variables of subfits
#' to canonical variables of 'object'
maps <- mapInterVars(object, subs, mom)
#' (4) Process each row, summing A2 and A3
for(i in seq_len(n)) {
subi <- subs[[i]]
cmap <- maps[[i]]
#' contributes to second order terms only if non-Poisson
if(!is.poisson(subi)) {
cnames.i <- names(coef(subi))
a2i <- a2[[i]]
a3i <- a3[[i]]
#' the (unique) tag name of the interaction in this model
tagi <- colnames(activeinter)[activeinter[i,]]
#' the corresponding canonical variable name(s) for this interaction
vni <- Vnamelist[[tagi]]
#' ignore offset variables
iso <- Isoffsetlist[[tagi]]
vni <- vni[!iso]
if(length(vni)) {
#' retain only interaction rows & columns (the rest are zero anyway)
e <- cnames.i %in% vni
a2ie <- a2i[e, e, drop=FALSE]
a3ie <- a3i[e, e, drop=FALSE]
#' all possible mappings
mappings <- do.call(expand.grid,
append(cmap, list(stringsAsFactors=FALSE)))
nmappings <- nrow(mappings)
if(nmappings == 0) {
warning("Internal error: Unable to map submodel to full model")
} else {
for(irow in 1:nmappings) {
for(jcol in 1:nmappings) {
cmi <- as.character(mappings[irow,])
cmj <- as.character(mappings[jcol,])
if(anyDuplicated(cmi) || anyDuplicated(cmj)) {
warning("Internal error: duplicated labels in submodel map")
} else if(!is.null(a2ie)) {
A2[cmi,cmj] <- A2[cmi,cmj] + a2ie
A3[cmi,cmj] <- A3[cmi,cmj] + a2ie
}
}
}
}
}
}
}
#' (5) pack up
internals <- list(A1=A1, A2=A2, A3=A3)
if(what %in% c("internals", "all"))
internals <- c(internals, list(suff=mom))
if(what %in% c("vcov", "corr", "all")) {
#' variance-covariance matrix required
U <- checksolve(A1, matrix.action, , "variance")
vc <- if(is.null(U)) NULL else (U %*% (A1 + A2 + A3) %*% U)
}
out <- switch(what,
fisher = A1 + A2 + A3,
vcov = vc,
corr = {
if(is.null(vc)) return(NULL)
sd <- sqrt(diag(vc))
vc / outer(sd, sd, "*")
},
internals = internals,
all = list(internals=internals,
fisher=A1+A2+A3,
varcov=vc,
invgrad=A1)
)
return(out)
}
addsubmatrix <- function(A, B, guessnames) {
if(is.null(B)) return(A)
if(is.null(colnames(B)) && !missing(guessnames)) {
if(is.character(guessnames))
guessnames <- list(guessnames, guessnames)
if(all(lengths(guessnames) == dim(B)))
colnames(B) <- guessnames
}
if(is.null(colnames(B))) {
#' unusual
if(!all(dim(A) == dim(B)))
stop("Internal error: no column names, and matrices non-conformable")
A <- A + B
return(A)
}
j <- match(colnames(B), colnames(A))
if(anyNA(j))
stop("Internal error: unmatched column name(s)")
A[j,j] <- A[j,j] + B
return(A)
}
bindsubmatrix <- function(A, B) {
if(is.null(B)) return(A)
if(is.null(colnames(B))) {
if(ncol(A) != ncol(B))
stop("Internal error: no column names, and matrices non-conformable")
A <- rbind(A, B)
return(A)
}
j <- match(colnames(B), colnames(A))
if(anyNA(j))
stop("Internal error: unmatched column name(s)")
BB <- matrix(0, nrow(B), ncol(A))
BB[,j] <- B
A <- rbind(A, BB)
return(A)
}
mergeAlternatives <- function(A, B) {
okA <- !sapply(A, is.null)
okB <- !sapply(B, is.null)
if(any(override <- !okA & okB))
A[override] <- B[override]
return(A)
}
## notallzero <- function(df) { apply(df != 0, 2, any) }
vcov.mppm
})
|