1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
\name{delaunayNetwork}
\alias{delaunayNetwork}
\alias{dirichletNetwork}
\title{
Linear Network of Delaunay Triangulation or Dirichlet Tessellation
}
\description{
Computes the edges of the Delaunay triangulation
or Dirichlet tessellation of a point pattern,
and returns the result as a linear network object.
}
\usage{
delaunayNetwork(X)
dirichletNetwork(X, \dots)
}
\arguments{
\item{X}{A point pattern (object of class \code{"ppp"}).}
\item{\dots}{Arguments passed to \code{\link{as.linnet.psp}}}
}
\details{
For \code{delaunayNetwork}, points of \code{X} which are neighbours
in the Delaunay triangulation
(see \code{\link[spatstat.geom]{delaunay}}) will be joined by a straight line.
The result will be returned as a linear network (object of class
\code{"linnet"}).
For \code{dirichletNetwork}, the Dirichlet tessellation is computed
(see \code{\link[spatstat.geom]{dirichlet}}) and the edges of the
tiles of the tessellation are extracted. This is converted to a linear
network using \code{\link{as.linnet.psp}}.
}
\value{
Linear network (object of class \code{"linnet"})
or \code{NULL}.
}
\author{
\adrian
\rolf
and \ege
}
\seealso{
\code{\link[spatstat.geom]{delaunay}},
\code{\link[spatstat.geom]{dirichlet}},
\code{\link[spatstat.geom]{delaunayDistance}}
}
\examples{
LE <- delaunayNetwork(cells)
LI <- dirichletNetwork(cells)
}
\keyword{spatial}
\keyword{manip}
|