File: densityEqualSplit.Rd

package info (click to toggle)
r-cran-spatstat.linnet 3.2-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,664 kB
  • sloc: ansic: 2,107; makefile: 32; sh: 13
file content (146 lines) | stat: -rw-r--r-- 5,095 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
\name{densityEqualSplit}
\alias{densityEqualSplit}
\title{
  Equal-Split Algorithm for Kernel Density on a Network
}
\description{
  Computes a kernel density estimate on a linear network
  using the Okabe-Sugihara equal-split algorithms.
}
\usage{
 densityEqualSplit(x, sigma = NULL, \dots,
                   at = c("pixels", "points"),
                   leaveoneout=TRUE,
                   weights = NULL,
                   kernel = "epanechnikov", continuous = TRUE,
                   epsilon = 1e-06, verbose = TRUE, debug = FALSE, savehistory = TRUE)
}
\arguments{
  \item{x}{
    Point pattern on a linear network (object of class \code{"lpp"})
    to be smoothed.
  }
  \item{sigma}{
    Smoothing bandwidth (standard deviation of the kernel).
    A numeric value in the same units as the spatial coordinates of \code{x}.
    Alternatively \code{sigma} may be a function which selects a
    bandwidth when applied to \code{X},
    for example, \code{\link[spatstat.explore]{bw.scott.iso}} or \code{\link{bw.lppl}}.
    There is a sensible default.
  }
  \item{\dots}{
    Arguments passed to \code{\link[spatstat.geom]{as.mask}} determining the
    resolution of the result.
  }
  \item{at}{
    String (partially matched)
    specifying whether to compute the intensity values
    at a fine grid of locations on the network
    (\code{at="pixels"}, the default) or
    only at the points of \code{x} (\code{at="points"}).
  }
  \item{leaveoneout}{
    Logical value indicating whether to compute a leave-one-out
    estimator. Applicable only when \code{at="points"}.
  }
  \item{weights}{
    Optional. Numeric vector of weights associated with the
    points of \code{x}. Weights may be positive, negative or zero.
  }
  \item{kernel}{
    Character string specifying the smoothing kernel.
    See \code{\link[spatstat.univar]{dkernel}} for possible options.
  }
  \item{continuous}{
    Logical value indicating whether to compute the
    \dQuote{equal-split continuous} smoother (\code{continuous=TRUE}, the
    default) or the \dQuote{equal-split discontinuous} smoother
    (\code{continuous=FALSE}). 
  }
  \item{epsilon}{
    Tolerance value. A tail of the kernel with total mass
    less than \code{epsilon} may be deleted.
  }
  \item{verbose}{
    Logical value indicating whether to print progress reports.
  }
  \item{debug}{
    Logical value indicating whether to print debugging information.
  }
  \item{savehistory}{
    Logical value indicating whether to save the entire history of the
    algorithm, for the purposes of evaluating performance.
  }
}
\details{
  Kernel smoothing is applied to the points of \code{x}
  using a kernel based on path distances in the network.
  The result is a pixel image on the linear network (class
  \code{"linim"}) which can be plotted.

  Smoothing is performed using one of the \dQuote{equal-split} rules described in
  Okabe and Sugihara (2012).
  
  \itemize{
    \item
    If \code{continuous=TRUE} (the default), smoothing is performed
    using the \dQuote{equal-split continuous} rule described in
    Section 9.2.3 of Okabe and Sugihara (2012).
    The resulting function is continuous on the linear network.
    \item
    If \code{continuous=FALSE}, smoothing is performed
    using the \dQuote{equal-split discontinuous} rule described in
    Section 9.2.2 of Okabe and Sugihara (2012). The
    resulting function is not continuous.
  }
  Computation is performed by path-tracing
  as described in Okabe and Sugihara (2012).

  It is advisable to choose a kernel with bounded support
  such as \code{kernel="epanechnikov"}.
  With a Gaussian kernel, computation time can be long, and
  increases exponentially with \code{sigma}.

  Faster algorithms are available through \code{\link{density.lpp}}.

  The argument \code{sigma} specifies the smoothing bandwidth.
  If \code{sigma} is missing or \code{NULL},
  the default is one-eighth of the length of the shortest side
  of the bounding box of \code{x}.
  If \code{sigma} is a function in the \R language, it is assumed
  to be a bandwidth selection rule, and it will be applied to \code{x}
  to compute the bandwidth value.
}
\section{Infinite bandwidth}{
  If \code{sigma=Inf}, the resulting density estimate is 
  constant over all locations,
  and is equal to the average density of points per unit length.
  (If the network is not connected, then this rule
  is applied separately to each connected component of the network).
}
\value{
  If \code{at="pixels"} (the default),
  a pixel image on the linear network (object of class \code{"linim"}).

  If \code{at="points"}, a numeric vector with one entry for each point
  of \code{x}.
}
\references{
  Okabe, A. and Sugihara, K. (2012)
  \emph{Spatial analysis along networks}.
  Wiley.
}
\author{
  \adrian and Greg McSwiggan.
}
\seealso{
  \code{\link{density.lpp}}
}
\examples{
  X <- runiflpp(3, simplenet)
  De <- density(X, 0.2, kernel="epanechnikov", verbose=FALSE)
  Ded <- density(X, 0.2, kernel="epanechnikov", continuous=FALSE, verbose=FALSE)
}
\keyword{spatial}
\keyword{methods}
\keyword{smooth}