File: linearKinhom.Rd

package info (click to toggle)
r-cran-spatstat.linnet 3.2-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,664 kB
  • sloc: ansic: 2,107; makefile: 32; sh: 13
file content (186 lines) | stat: -rw-r--r-- 6,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
\name{linearKinhom}
\alias{linearKinhom}
\title{
  Inhomogeneous Linear K Function
}
\description{
  Computes an estimate of the inhomogeneous linear \eqn{K} function
  for a point pattern on a linear network.
}
\usage{
linearKinhom(X, lambda=NULL, r=NULL, ..., correction="Ang",
             normalise=TRUE, normpower=1,
	     update=TRUE, leaveoneout=TRUE, sigma=NULL, ratio=FALSE)
}
\arguments{
  \item{X}{
    Point pattern on linear network (object of class \code{"lpp"}).
  }
  \item{lambda}{
    Intensity values for the point pattern. Either a numeric vector,
    a \code{function}, a pixel image
    (object of class \code{"im"} or \code{"linim"}) or
    a fitted point process model (object of class \code{"ppm"}
    or \code{"lppm"}) or \code{NULL}.
  }
  \item{r}{
    Optional. Numeric vector of values of the function argument \eqn{r}.
    There is a sensible default. Users are advised not to specify
    \code{r} in normal usage.
  }
  \item{\dots}{
    Ignored.
  }
  \item{correction}{
    Geometry correction.
    Either \code{"none"} or \code{"Ang"}. See Details.
  }
  \item{normalise}{
    Logical. If \code{TRUE} (the default), the denominator of the estimator is 
    data-dependent (equal to the sum of the reciprocal intensities at the data
    points, raised to \code{normpower}), which reduces the sampling variability.
    If \code{FALSE}, the denominator is the length of the network.
  }
  \item{normpower}{
    Integer (usually either 1 or 2).
    Normalisation power. See Details.
  }
  \item{update}{
    Logical value indicating what to do when \code{lambda} is a fitted model
    (class \code{"lppm"} or \code{"ppm"}).
    If \code{update=TRUE} (the default),
    the model will first be refitted to the data \code{X}
    (using \code{\link{update.lppm}} or \code{\link[spatstat.model]{update.ppm}})
    before the fitted intensity is computed.
    If \code{update=FALSE}, the fitted intensity of the
    model will be computed without re-fitting it to \code{X}.
  }
  \item{leaveoneout}{
    Logical value specifying whether to use a
    leave-one-out rule when calculating the intensity.
    See Details.
  }
  \item{sigma}{
    Smoothing bandwidth (passed to \code{\link{density.lpp}})
    for kernel density estimation of the intensity when
    \code{lambda=NULL}.
  }
  \item{ratio}{
    Logical. 
    If \code{TRUE}, the numerator and denominator of
    the estimate will also be saved,
    for use in analysing replicated point patterns.
  }
}
\details{
  This command computes the inhomogeneous version of the 
  linear \eqn{K} function from point pattern data on a linear network.

  The argument \code{lambda} should provide estimated values
  of the intensity of the point process at each point of \code{X}.

  If \code{lambda=NULL}, the intensity will be estimated by kernel
  smoothing by calling \code{\link{density.lpp}} with the smoothing
  bandwidth \code{sigma}, and with any other relevant arguments
  that might be present in \code{\dots}. A leave-one-out kernel estimate
  will be computed if \code{leaveoneout=TRUE}.

  If \code{lambda} is given, it may be a numeric vector (of length equal to
  the number of points in \code{X}), or a \code{function(x,y)} that will be
  evaluated at the points of \code{X} to yield numeric values, 
  or a pixel image (object of class \code{"im"}) or a fitted point 
  process model (object of class \code{"ppm"} or \code{"lppm"}).

  If \code{lambda} is a fitted point process model,
  the default behaviour is to update the model by re-fitting it to
  the data, before computing the fitted intensity.
  This can be disabled by setting \code{update=FALSE}.
  The intensity at data points will be computed
  by \code{\link{fitted.lppm}} or \code{\link[spatstat.model]{fitted.ppm}}.
  A leave-one-out estimate will be computed if \code{leaveoneout=TRUE}
  and \code{update=TRUE}.

  If \code{correction="none"}, the calculations do not include
  any correction for the geometry of the linear network.
  If \code{correction="Ang"}, the pair counts are weighted using
  Ang's correction (Ang, 2010).

  Each estimate is initially computed as 
  \deqn{
    \widehat K_{\rm inhom}(r) = \frac{1}{\mbox{length}(L)}
    \sum_i \sum_j \frac{1\{d_{ij} \le r\}
      e(x_i,x_j)}{\lambda(x_i)\lambda(x_j)}
  }{
    K^inhom(r)= (1/length(L)) sum[i] sum[j] 1(d[i,j] <= r) * 
    e(x[i],x[j])/(lambda(x[i]) * lambda(x[j]))
  }
  where \code{L} is the linear network,
  \eqn{d_{ij}}{d[i,j]} is the distance between points
  \eqn{x_i}{x[i]} and \eqn{x_j}{x[j]}, and
  \eqn{e(x_i,x_j)}{e(x[i],x[j])} is a weight.
  If \code{correction="none"} then this weight is equal to 1,
  while if  \code{correction="Ang"} the weight is
  \eqn{e(x_i,x_j,r) = 1/m(x_i, d_{ij})}{e(x[i],x[j],r) = 1/m(x[i],d[i,j])}
  where \eqn{m(u,t)} is the number of locations on the network that lie
  exactly \eqn{t} units distant from location \eqn{u} by the shortest
  path.

  If \code{normalise=TRUE} (the default), then the estimates
  described above
  are multiplied by \eqn{c^{\mbox{normpower}}}{c^normpower} where 
  \eqn{
    c = \mbox{length}(L)/\sum (1/\lambda(x_i)).
  }{
    c = length(L)/sum[i] (1/lambda(x[i])).
  }
  This rescaling reduces the variability and bias of the estimate
  in small samples and in cases of very strong inhomogeneity.
  The default value of \code{normpower} is 1 (for consistency with
  previous versions of \pkg{spatstat})
  but the most sensible value is 2, which would correspond to rescaling
  the \code{lambda} values so that
  \eqn{
    \sum (1/\lambda(x_i)) = \mbox{area}(W).
  }{
    sum[i] (1/lambda(x[i])) = area(W).
  }
}
\section{Warning}{
  Older versions of \code{\link{linearKinhom}} interpreted
  \code{lambda=NULL} to mean that the homogeneous function
  \code{\link{linearK}} should be computed. This was changed to the
  current behaviour in version \code{3.1-0} of \pkg{spatstat.linnet}.
}
\value{
  Function value table (object of class \code{"fv"}).
}
\author{
  \wei and
  \adrian
}
\references{
  Ang, Q.W. (2010) Statistical methodology for spatial point patterns
  on a linear network. MSc thesis, University of Western Australia.
  
  Ang, Q.W., Baddeley, A. and Nair, G. (2012)
  Geometrically corrected second-order analysis of 
  events on a linear network, with applications to
  ecology and criminology.
  \emph{Scandinavian Journal of Statistics} \bold{39}, 591--617.
}
\seealso{
  \code{\link{lpp}}
}
\examples{
  X <- rpoislpp(5, simplenet)
  fit <- lppm(X ~x)
  K <- linearKinhom(X, lambda=fit)
  plot(K)
  Ke <- linearKinhom(X, sigma=bw.lppl)
  plot(Ke)
}
\keyword{spatial}
\keyword{nonparametric}


\concept{Linear network}