File: linearpcfdot.inhom.Rd

package info (click to toggle)
r-cran-spatstat.linnet 3.2-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,664 kB
  • sloc: ansic: 2,107; makefile: 32; sh: 13
file content (143 lines) | stat: -rw-r--r-- 5,361 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
\name{linearpcfdot.inhom}
\alias{linearpcfdot.inhom}
\title{
  Inhomogeneous Multitype
  Pair Correlation Function (Dot-type) for Linear Point Pattern
}
\description{
  For a multitype point pattern on a linear network,
  estimate the inhomogeneous multitype pair correlation function
  from points of type \eqn{i} to points of any type.
}
\usage{
linearpcfdot.inhom(X, i, lambdaI, lambdadot, r=NULL, \dots,
                   correction="Ang", normalise=TRUE,
                   sigma=NULL, adjust.sigma=1,
                   bw="nrd0", adjust.bw=1)
}
\arguments{
  \item{X}{The observed point pattern, 
    from which an estimate of the \eqn{i}-to-any pair correlation function
    \eqn{g_{i\bullet}(r)}{g[i.](r)} will be computed.
    An object of class \code{"lpp"} which 
    must be a multitype point pattern (a marked point pattern
    whose marks are a factor).
  }
  \item{i}{Number or character string identifying the type (mark value)
    of the points in \code{X} from which distances are measured.
    Defaults to the first level of \code{marks(X)}.
  }
  \item{lambdaI}{
    Intensity values for the points of type \code{i}. Either a numeric vector,
    a \code{function}, a pixel image
    (object of class \code{"im"} or \code{"linim"}) or
    a fitted point process model (object of class \code{"ppm"}
    or \code{"lppm"}) or \code{NULL}.
  }
  \item{lambdadot}{
    Intensity values for all points of \code{X}. Either a numeric vector,
    a \code{function}, a pixel image
    (object of class \code{"im"} or \code{"linim"}) or
    a fitted point process model (object of class \code{"ppm"}
    or \code{"lppm"}) or \code{NULL}.
  }
  \item{r}{numeric vector. The values of the argument \eqn{r}
    at which the function
    \eqn{g_{i\bullet}(r)}{g[i.](r)} should be evaluated.
    There is a sensible default.
    First-time users are strongly advised not to specify this argument.
    See below for important conditions on \eqn{r}.
  }
  \item{correction}{
    Geometry correction.
    Either \code{"none"} or \code{"Ang"}. See Details.
  }
  \item{\dots}{
    Arguments passed to \code{\link[stats]{density.default}}
    to control the kernel smoothing.
  }
  \item{normalise}{
    Logical. If \code{TRUE} (the default), the denominator of the estimator is 
    data-dependent (equal to the sum of the reciprocal intensities at
    the points of type \code{i}), which reduces the sampling variability.
    If \code{FALSE}, the denominator is the length of the network.
  }
  \item{sigma}{
    Smoothing bandwidth passed to \code{\link{density.lpp}}
    for estimation of intensities when either \code{lambdaI} or
    \code{lambdadot} is \code{NULL}.
  }
  \item{adjust.sigma}{
    Numeric value. \code{sigma} will be multiplied by this value.
  }
  \item{bw}{
    Smoothing bandwidth (passed to \code{\link[stats]{density.default}})
    for one-dimensional kernel smoothing of the pair correlation function.
    Either a numeric value, or a character string recognised
    by \code{\link[stats]{density.default}}.
  }
  \item{adjust.bw}{
    Numeric value. \code{bw} will be multiplied by this value.
  }
}
\value{
  An object of class \code{"fv"} (see \code{\link[spatstat.explore]{fv.object}}).
}
\details{
  This is a counterpart of the function \code{\link[spatstat.explore]{pcfdot.inhom}} 
  for a point pattern on a linear network (object of class \code{"lpp"}).

  The argument \code{i} will be interpreted as
  levels of the factor \code{marks(X)}. 
  If \code{i} is missing, it defaults to the first
  level of the marks factor.

  The argument \code{r} is the vector of values for the
  distance \eqn{r} at which \eqn{g_{i\bullet}(r)}{g[i.](r)}
  should be evaluated. 
  The values of \eqn{r} must be increasing nonnegative numbers
  and the maximum \eqn{r} value must not exceed the radius of the
  largest disc contained in the window.

  If \code{lambdaI} or \code{lambdadot} is missing or \code{NULL}, it will
  be estimated by kernel smoothing using \code{\link{density.lpp}}.

  If \code{lambdaI} or \code{lambdadot} is a fitted point process model,
  the default behaviour is to update the model by re-fitting it to
  the data, before computing the fitted intensity.
  This can be disabled by setting \code{update=FALSE}.
}
\references{
  Baddeley, A, Jammalamadaka, A. and Nair, G. (2014)
  Multitype point process analysis of spines on the
  dendrite network of a neuron.
  \emph{Applied Statistics} (Journal of the Royal Statistical
  Society, Series C), \bold{63}, 673--694.
}
\section{Warnings}{
  The argument \code{i} is interpreted as a
  level of the factor \code{marks(X)}. Beware of the usual
  trap with factors: numerical values are not
  interpreted in the same way as character values. 
}
\seealso{
 \code{\link{linearpcfcross.inhom}},
 \code{\link{linearpcfdot}},
 \code{\link[spatstat.explore]{pcfdot.inhom}}.
}
\examples{
   lam <- table(marks(chicago))/(summary(chicago)$totlength)
   lamI <- function(x,y,const=lam[["assault"]]){ rep(const, length(x)) }
   lam. <- function(x,y,const=sum(lam)){ rep(const, length(x)) }

   g <- linearpcfdot.inhom(chicago, "assault", lamI, lam.)

   # using fitted models for the intensity
   # fit <- lppm(chicago, ~marks + x)
   # linearpcfdot.inhom(chicago, "assault", fit, fit)
}
\author{\adrian}
\keyword{spatial}
\keyword{nonparametric}

\concept{Linear network}