File: spatstat.linnet-internal.Rd

package info (click to toggle)
r-cran-spatstat.linnet 3.2-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,664 kB
  • sloc: ansic: 2,107; makefile: 32; sh: 13
file content (196 lines) | stat: -rw-r--r-- 6,705 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
\name{spatstat.linnet-internal} 
\title{Internal spatstat.linnet functions}
\alias{spatstat.linnet-internal} %DoNotExport


%% Linear networks code is corralled here
\alias{ApplyConnected}
\alias{DoCountCrossEnds}
\alias{DoCountEnds}
\alias{FDMKERNEL}
\alias{as.linfun.linfun}
\alias{as.owin.lintess}
\alias{default.linnet.tolerance}
\alias{evaluateNetCovariate}
\alias{evaluateNetCovariateAlongNetwork}
\alias{evaluateNetCovariateAtPoints}
\alias{exactlppm}
\alias{getglmdata.lppm}
\alias{getglmfit.lppm}
\alias{getglmsubset.lppm}
\alias{hasglmfit.lppm}
\alias{is.poisson.exactlppm}
\alias{is.stationary.exactlppm}
\alias{makeLinnetTolerance}
\alias{predict.exactlppm}
\alias{print.exactlppm}
\alias{print.lintess}
\alias{print.summary.linim}
\alias{print.summary.linnet}
\alias{print.summary.lintess}
\alias{resolve.heat.steps}
\alias{response.exactlppm}
\alias{rmaxEuclidean}
\alias{summary.lintess}
\alias{nobjects.lintess}
\alias{Window.lintess}
\alias{Window<-.linnet}
\alias{Window<-.lpp}
\alias{densitypointsLPP}
\alias{flatdensityfunlpp}
\alias{flatdensityatpointslpp}
\alias{local2lpp}
\alias{looHeatLPP}
\alias{looVoronoiLPP}
\alias{validate.lpp.coords}
\alias{as.ppm.lppm}
\alias{pointsAlongNetwork}
\alias{lineardiscEngine}
\alias{linearEuclidEngine}
\alias{linearKengine}
\alias{linearKmulti}
\alias{linearKmulti.inhom}
\alias{linearKmultiEngine}
\alias{linearpcfengine}
\alias{linearpcfmulti}
\alias{linearpcfmulti.inhom}
\alias{linearPCFmultiEngine}
\alias{resampleNetworkDataFrame}
\alias{resolve.lambda.lpp}
\alias{sortalongsegment}
\alias{spatialCovariateEvidence.lppm}
\alias{spatialCovariateEvidence.exactlppm}
\alias{vnnFind}
\alias{ldtEngine}
\alias{qkdeEngine}
\alias{updateData.lppm}
\alias{Math.linimlist}
\alias{Ops.linimlist}
\alias{Summary.linimlist}
\alias{Complex.linimlist}
\alias{LinimOp}
\alias{LinimListOp}
\alias{traceTessLinnet}


%%%%%%%
\description{
  Internal spatstat.linnet functions.
}
\usage{




%% Linear networks code is corralled here
ApplyConnected(X, Engine, r, \dots, rule, auxdata)
DoCountEnds(X, D, toler)
DoCountCrossEnds(X, I, J, DIJ, toler)
FDMKERNEL(lppobj, dtt, dtx, M, nsave, weights,
          stepnames, setuponly, verbose)
\method{as.linfun}{linfun}(X, \dots)
\method{as.owin}{lintess}(W, \dots)
\method{getglmdata}{lppm}(object, \dots)
\method{getglmfit}{lppm}(object, \dots)
\method{getglmsubset}{lppm}(object, \dots)
\method{hasglmfit}{lppm}(object)
default.linnet.tolerance(L)
evaluateNetCovariate(covariate, locations, \dots)
evaluateNetCovariateAlongNetwork(covariate, locations, \dots, types)
evaluateNetCovariateAtPoints(covariate, locations, \dots, allow.column)
exactlppm(X, baseline, \dots, subset)
\method{is.poisson}{exactlppm}(x)
\method{is.stationary}{exactlppm}(x)
makeLinnetTolerance(toler)
\method{predict}{exactlppm}(object, locations,\dots)
\method{print}{exactlppm}(x, \dots)
\method{print}{lintess}(x, \dots)
\method{print}{summary.linim}(x, \dots)
\method{print}{summary.linnet}(x, \dots)
\method{print}{summary.lintess}(x, \dots)
\method{summary}{lintess}(object, \dots)
\method{response}{exactlppm}(object)
\method{nobjects}{lintess}(x)
\method{Window}{lintess}(X, \dots)
\method{Window}{linnet}(X, \dots, check=TRUE) <- value
\method{Window}{lpp}(X, \dots, check=TRUE) <- value
densitypointsLPP(x, sigma, \dots,
                 weights, nsigma, leaveoneout, fast,
                 fastmethod, floored,
                 dx, dt, iterMax, verbose, debug)
flatdensityfunlpp(X, \dots, disconnect, weights, what)
flatdensityatpointslpp(X, \dots, leaveoneout, disconnect, weights, what)
local2lpp(L, seg, tp, X, df.only)
looHeatLPP(U0, Amatrix, npts, niter, nsave,
           lixelweight, lixelmap, verbose) 
looVoronoiLPP(X)
validate.lpp.coords(X, fatal, context)
\method{as.ppm}{lppm}(object)
pointsAlongNetwork(L, delta)
lineardiscEngine(L, x, r, want)
linearEuclidEngine(X, fun, \dots, r, reweight, denom,
                   samplesize, showworking, correction)
linearKengine(X, \dots, r, reweight, denom, samplesize,
              correction, ratio, showworking)
linearKmulti(X, I, J, r, \dots, correction)
linearKmulti.inhom(X, I, J, lambdaI, lambdaJ, r, \dots, correction,
             normalise, sigma)
linearpcfengine(X, \dots, r, reweight, denom, samplesize, correction, ratio)
linearpcfmulti(X, I, J, r, \dots, correction)
linearpcfmulti.inhom(X, I, J, lambdaI, lambdaJ, r, \dots,
                     correction, normalise,
                     sigma, adjust.sigma, bw, adjust.bw)
linearKmultiEngine(X, I, J, \dots,
                   r, reweight, denom, samplesize, correction, showworking)
linearPCFmultiEngine(X, I, J, \dots,
                   r, reweight, denom, samplesize, correction, showworking)
resampleNetworkDataFrame(df, template)
\method{resolve.lambda}{lpp}(X, lambda, subset, \dots,
       update, leaveoneout, everywhere, loo.given, sigma, lambdaname)
sortalongsegment(df)
\method{spatialCovariateEvidence}{lppm}(model, covariate, \dots, lambdatype, 
          eps, dimyx, xy, rule.eps,
          delta, nd, interpolate, jitter, jitterfactor,
          modelname, covname, dataname, subset, clip.predict)
\method{spatialCovariateEvidence}{exactlppm}(model, covariate, \dots,
          lambdatype, interpolate, jitter, jitterfactor,
          modelname, covname, dataname, subset, clip.predict)
vnnFind(seg, tp, ns, nv, from, to, seglen, huge, tol, kmax)
ldtEngine(nv, ns, from, to, seglen, huge,
          coUXord, vnndist, vnnwhich, vnnlab)
resolve.heat.steps(sigma, \dots, dx, dt,
                   niter, iterMax, nsave,
                   seglengths, maxdegree, AMbound, L,
                   finespacing, fineNsplit, fineNlixels,
                   W, eps, dimyx, xy, 
                   allow.adjust, warn.adjust,
                   verbose, stepnames)
rmaxEuclidean(L, verbose, show)
qkdeEngine(x, sigma, \dots, at, what,
           leaveoneout, diggle, raw, edge2D, edge,
           weights, varcov, positive, shortcut,
           precomputed, savecomputed)
\method{updateData}{lppm}(model, X, \dots)
\special{Math(x, \dots)}
\special{Ops(e1, e2)}
\special{Complex(z)}
\special{Summary(\dots, na.rm = FALSE)}
%NAMESPACE S3method("Math", "linimlist")
%NAMESPACE S3method("Ops", "linimlist")
%NAMESPACE S3method("Complex", "linimlist")
%NAMESPACE S3method("Summary", "linimlist")
LinimOp(e1, e2, op)
LinimListOp(e1, e2, op)
traceTessLinnet(A, L)

}
\details{
  These internal \pkg{spatstat.linnet} functions should not be called
  directly by the user. Their names and capabilities may change
  without warning from one version of \pkg{spatstat.linnet} to the next.
}
\value{
The return values of these functions are not documented,
and may change without warning.
}
\keyword{internal}