File: spatstat.linnet-package.Rd

package info (click to toggle)
r-cran-spatstat.linnet 3.2-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,664 kB
  • sloc: ansic: 2,107; makefile: 32; sh: 13
file content (533 lines) | stat: -rw-r--r-- 24,342 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
\name{spatstat.linnet-package}
\alias{spatstat.linnet-package} 
\alias{spatstat.linnet} 
\docType{package}
\title{The spatstat.linnet Package}
\description{
  The \pkg{spatstat.linnet} package
  belongs to the \pkg{spatstat} family of packages.
  It contains the functionality
  for analysing spatial data on a linear network.
}
\details{
  \pkg{spatstat} is
  a family of \R packages
  for the statistical analysis of spatial data.
  Its main focus is the analysis of
  spatial patterns of points in two-dimensional space.

  The original \pkg{spatstat} package
  has now been split into several
  sub-packages.

  This sub-package \pkg{spatstat.linnet} contains the
  user-level functions from \pkg{spatstat} 
  that are concerned with spatial data on a linear network.
}
\section{Structure of the spatstat family}{  
  The orginal \pkg{spatstat} package grew to be very large.
  It has now been divided into several \bold{sub-packages}:
  \itemize{
    \item \pkg{spatstat.utils} containing basic utilities
    \item \pkg{spatstat.sparse} containing linear algebra utilities
    \item \pkg{spatstat.data} containing datasets
    \item \pkg{spatstat.univar} containing functions for estimating
    probability distributions of random variables
    \item \pkg{spatstat.geom} containing geometrical objects
    and geometrical operations
    \item \pkg{spatstat.explore} containing the main functionality
    for exploratory and non-parametric analysis of spatial data
    \item \pkg{spatstat.model} containing the main functionality
    for statistical modelling and inference for spatial data
    \item \pkg{spatstat.linnet} containing functions for
    spatial data on a linear network
    \item \pkg{spatstat}, which simply loads the other sub-packages
    listed above, and provides documentation.
  }
  When you install \pkg{spatstat}, these sub-packages are also
  installed. Then if you load the \pkg{spatstat} package by typing
  \code{library(spatstat)}, the other sub-packages listed above will
  automatically be loaded or imported.
  For an overview of all the functions available in these sub-packages,
  see the help file for \pkg{spatstat} in the \pkg{spatstat} package,

  Additionally there are several \bold{extension packages:}
  \itemize{
    \item \pkg{spatstat.gui} for interactive graphics
    \item \pkg{spatstat.local} for local likelihood
    (including geographically weighted regression)
    \item \pkg{spatstat.Knet} for additional, computationally efficient code
    for linear networks
    \item \pkg{spatstat.sphere} (under development) for spatial data
    on a sphere, including spatial data on the earth's surface
  }
  The extension packages must be installed separately
  and loaded explicitly if needed. They also have separate documentation.
}
\section{Overview of \pkg{spatstat.linnet}}{
  A linear network is a subset of the two-dimensional plane
  composed of straight line segments. It could represent a road network, for
  example. Our code requires that, if two segments intersect each other,
  then the intersection is a single point, and the intersection point is
  treated as a vertex of the network.

  The \pkg{spatstat.linnet} package supports spatial data analysis on
  a linear network. The primary aim is to analyse spatial patterns of
  points on a network. The points could represent road accidents on a
  road network, for example.

  The \pkg{spatstat.linnet} package provides code for handling
  \itemize{
    \item \code{linear networks}
    \item \code{point patterns on a linear network}
    \item \code{pixel images on a linear network} (where the network is
  divided into small segments and a numerical value is assigned to each segment)
    \item \code{functions on a linear network} (i.e. functions that are
    defined at every location along the network)
    \item \code{tessellations of a linear network} (where the network is
    subdivided into disjoint subsets with different labels)
    \item \code{point process models on a linear network}
  }

  Here is a list of the main functionality
  provided in \pkg{spatstat.linnet}.

  \bold{Linear networks}
  
  An object of class \code{"linnet"} represents a linear network.
  Examples of such objects include the dataset
  \code{\link[spatstat.data]{simplenet}} provided in the package.
  
  Linear network objects can be created by the following functions:

  \tabular{ll}{
    \code{\link{linnet}} \tab create a linear network \cr
    \code{\link{as.linnet}} \tab convert other data to a network \cr
    \code{\link{delaunayNetwork}} \tab network of Delaunay triangulation \cr
    \code{\link{dirichletNetwork}} \tab network of Dirichlet edges \cr
  }

  Utilities for manipulating networks include:
  \tabular{ll}{
    \code{\link{[.linnet}}\tab  extract subset of linear network \cr
    \code{\link{clickjoin}} \tab interactively join vertices in network \cr         \code{\link{joinVertices}} \tab join existing vertices in a network \cr
    \code{\link{insertVertices}} \tab insert new vertices at positions
    along network \cr
    \code{\link{addVertices}} \tab add new vertices, extending a network \cr
    \code{\link{thinNetwork}} \tab remove vertices or lines from a network \cr
    \code{\link{repairNetwork}} \tab repair internal format \cr
    \code{\link{vertices.linnet}} \tab extract the vertices of network \cr
    \code{\link{terminalvertices}} \tab find terminal vertices of
    network \cr
    \code{\link{affine.linnet}} \tab apply affine transformation \cr
    \code{\link{shift.linnet}} \tab apply vector translation \cr
    \code{\link{rotate.linnet}} \tab apply rotation \cr
    \code{\link{rescale.linnet}} \tab rescale the unit of length \cr
    \code{\link{scalardilate.linnet}} \tab physically rescale the
    network \cr
    \code{\link{diameter.linnet}} \tab diameter of linear  network \cr
    \code{\link{is.connected.linnet}} \tab  determine whether network
    is connected \cr
    \code{\link{lineardisc}} \tab compute disc of given radius in
    network \cr
    \code{\link{marks.linnet}} \tab extract marks of a network \cr
    \code{\link{marks<-.linnet}} \tab assign marks to a network \cr
    \code{\link{plot.linnet}} \tab plot a network \cr
    \code{\link{as.owin.linnet}} \tab extract window containing network \cr
    \code{\link{as.psp.linnet}} \tab extract line segments comprising
    network \cr
    \code{\link{nsegments.linnet}} \tab number of segments in network\cr
    \code{\link{nvertices.linnet}} \tab number of vertices in network\cr
    \code{\link{pixellate.linnet}} \tab convert network to 2D pixel
    image \cr
    \code{\link{print.linnet}} \tab print basic information \cr
    \code{\link{summary.linnet}} \tab print summary information \cr
    \code{\link{unitname.linnet}} \tab extract name of unit of length \cr
    \code{\link{unitname<-.linnet}} \tab assign name of unit of length \cr
    \code{\link{vertexdegree}} \tab number of segments meeting
    each vertex \cr
    \code{\link{volume.linnet}} \tab total length of network \cr
    \code{\link{Window.linnet}} \tab extract window containing network \cr
    \code{\link{density.linnet}} \tab smoothed 2D spatial density of lines \cr
  }

  A network is called a tree if it has no closed loops.
  The following functions support the creation and manipulation of
  trees:
  \tabular{ll}{
    \code{\link{begins}}\tab check start of character string\cr
    \code{\link{branchlabelfun}}\tab tree branch membership labelling
    function \cr
    \code{\link{deletebranch}}\tab delete a branch of a tree \cr
    \code{\link{extractbranch}}\tab extract a branch of a tree \cr
    \code{\link{treebranchlabels}}\tab label vertices of a tree by
    branch membership \cr
    \code{\link{treeprune}}\tab prune tree to given level\cr
  }

  \bold{Point patterns on a linear network}

    An object of class \code{"lpp"} represents a 
    point pattern on a linear network (for example,
    road accidents on a road network). 

    Examples of such objects include the following datasets
    provided in the \pkg{spatstat.data} package:
    
    \tabular{ll}{
      \code{\link[spatstat.data]{chicago}} \tab Chicago crime data \cr
      \code{\link[spatstat.data]{dendrite}} \tab Dendritic spines data \cr
      \code{\link[spatstat.data]{spiders}} \tab Spider webs on mortar lines of brick wall 
    }
    There is also a dataset provided in the extension package
    \pkg{spatstat.Knet}:
    \tabular{ll}{
      \code{wacrashes} \tab Road accidents in Western Australia
    }
    
    Point patterns on a network can be created by the following
    functions:

    \tabular{ll}{
      \code{\link{lpp}} \tab create a point pattern on a linear network \cr
      \code{\link{as.lpp}} \tab convert other data to point pattern on network \cr
      \code{\link{clicklpp}}\tab interactively add points on a linear
      Network \cr
      \code{\link{crossing.linnet}}\tab crossing points between network and other lines
    }

    Point patterns on a network can be generated randomly
    using the following functions:
    
    \tabular{ll}{
      \code{\link{rpoislpp}} \tab Poisson points on linear network \cr
      \code{\link{runiflpp}} \tab uniform random points on a linear network \cr
      \code{\link{rlpp}}\tab random points on a linear network\cr
      \code{\link{rSwitzerlpp}}\tab simulate Switzer-type point process on linear
      network \cr
      \code{\link{rThomaslpp}}\tab simulate Thomas process on linear network \cr
      \code{\link{rcelllpp}}\tab  simulate cell process on linear
      network \cr
      \code{\link{rjitter.lpp}}\tab randomly perturb a point pattern on
      a network \cr
    }

    Functions for manipulating a point pattern on a network include
    the following. An object of class \code{"lpp"} also belongs to the
    class \code{"ppx"}, for which additional support is available.
    
    \tabular{ll}{
      \code{\link{as.ppp.lpp}} \tab convert to 2D point pattern \cr
      \code{\link{as.psp.lpp}} \tab extract line segments \cr
      \code{\link[spatstat.geom]{marks.ppx}} \tab extract marks associated with points \cr
      \code{\link[spatstat.geom]{marks<-.ppx}} \tab assign marks to points on network \cr
      \code{\link{nsegments.lpp}} \tab count number of segments \cr
      \code{\link{print.lpp}} \tab print basic information \cr
      \code{\link{summary.lpp}} \tab print summary information \cr
      \code{\link{unitname.lpp}} \tab extract name of unit of length \cr
      \code{\link{unitname<-.lpp}} \tab assign name of unit of length \cr
      \code{\link{unmark.lpp}} \tab remove marks \cr
      \code{\link{subset.lpp}} \tab subset of points satisfying a
      condition \cr
      \code{\link{[.lpp}} \tab extract subset of point pattern\cr
      \code{\link{Window.lpp}} \tab extract window containing network \cr
      \code{\link{as.owin.lpp}} \tab extract window containing network \cr
      \code{\link{affine.lpp}} \tab apply affine transformation \cr
      \code{\link{shift.lpp}} \tab apply vector translation \cr
      \code{\link{rotate.lpp}} \tab apply rotation \cr
      \code{\link{rescale.lpp}} \tab rescale the unit of length \cr
      \code{\link{scalardilate.lpp}} \tab physically rescale the
      network and points \cr
      \code{\link{connected.lpp}}\tab find connected components of point
      pattern on network \cr
      \code{\link{cut.lpp}}\tab classify points in a Point Pattern on a
      Network \cr
      \code{\link{distfun.lpp}}\tab distance map (function) \cr
      \code{\link{distmap.lpp}}\tab distance map (image) \cr
      \code{\link{domain.lpp}}\tab  extract the linear network \cr
      \code{\link{identify.lpp}}\tab interactively identify points \cr
      \code{\link{is.multitype.lpp}}\tab recognize whether point pattern is
      multitype\cr
      \code{\link{nncross.lpp}}\tab nearest neighbours\cr
      \code{\link{nndist.lpp}}\tab  nearest neighbour distances \cr
      \code{\link{nnfromvertex}}\tab nearest data point from each vertex\cr
      \code{\link{nnfun.lpp}}\tab  nearest neighbour map \cr
      \code{\link{nnwhich.lpp}}\tab  identify nearest neighbours \cr
      \code{\link{pairdist.lpp}}\tab pairwise shortest-path distances \cr
      \code{\link{plot.lpp}}\tab plot point pattern on linear Network \cr
      \code{\link{points.lpp}}\tab draw points on existing plot \cr
      \code{\link{superimpose.lpp}}\tab  superimpose several point
      patterns \cr
      \code{\link{text.lpp}} \tab add text labels  \cr
      \code{\link{unstack.lpp}}\tab separate multiple columns of marks \cr
    }

    \bold{Pixel images on a network}

    An object of class \code{"linim"} represents a pixel image
    on a linear network. Effectively, the network is divided into small
    segments (lixels) and each small segment is assigned a value,
    which could be numeric, factor, logical or complex values.

    Pixel images on a network can be created using the following
    functions:

    \tabular{ll}{
      \code{\link{linim}}\tab create pixel image on linear network\cr
      \code{\link{as.linim}}\tab convert other data to pixel image on network\cr
    }

    Functions for manipulating a pixel image on a network include:

    \tabular{ll}{
      \code{\link{[.linim}} \tab extract subset of pixel image on linear network\cr
      \code{\link{[<-.linim}} \tab reset values in subset of image on linear network\cr
      \code{\link{Math.linim}}\tab S3 group generic methods for images on a linear network\cr
      \code{\link{eval.linim}}\tab evaluate expression involving pixel images on
      linear network\cr
      \code{\link{as.linnet.linim}} \tab extract linear network \cr
      \code{\link{integral.linim}}\tab integral of pixel image on a linear network\cr
      \code{\link{mean.linim}} \tab mean of pixel values \cr
      \code{\link{median.linim}} \tab median of pixel values \cr
      \code{\link{quantile.linim}} \tab quantiles of pixel values \cr
      \code{\link{as.data.frame.linim}} \tab convert to data frame \cr
      \code{\link{print.linim}} \tab print basic information \cr
      \code{\link{summary.linim}} \tab print summary information \cr
      \code{\link{affine.linim}} \tab apply affine transformation \cr
      \code{\link{scalardilate.linim}} \tab apply scalar dilation \cr
      \code{\link{shift.linim}} \tab apply vector translation \cr
      \code{\link{pairs.linim}} \tab scatterplot matrix for images \cr
      \code{\link{persp.linim}}\tab perspective view of pixel image on network\cr
      \code{\link{plot.linim}}\tab plot pixel image on linear network\cr
    }

    \bold{Functions on a linear network}

    An object of class \code{"linfun"} represents a function defined
    at any location along the network. Objects of this class are created
    by the following functions:

    \tabular{ll}{
      \code{\link{linfun}}\tab create function on a linear network \cr
      \code{\link{as.linfun}}\tab convert other data to function on network \cr
    }

    The following supporting code is available:

    \tabular{ll}{
      \code{\link{print.linfun}} \tab print basic information \cr
      \code{\link{summary.linfun}} \tab print summary information \cr
      \code{\link{plot.linfun}} \tab plot function on network \cr
      \code{\link{persp.linfun}}\tab perspective view of function on network\cr
      \code{\link{as.data.frame.linfun}} \tab convert to data frame \cr
      \code{\link{as.owin.linfun}} \tab extract window containing
      network \cr
      \code{\link{as.function.linfun}} \tab convert to ordinary \R
      function \cr
    }

    \bold{Tessellations of a linear network}

    An object of class \code{"lintess"} represents a tessellation of the
    network, that is, a subdivision of the network into disjoint subsets
    called \sQuote{tiles}. Objects of this class are created
    by the following functions:

    \tabular{ll}{
      \code{\link{lintess}}\tab create tessellation of network \cr
      \code{\link{chop.linnet}} \tab divide a linear network into tiles using
      infinite lines \cr
      \code{\link{divide.linnet}}\tab  divide linear network at cut
      points \cr
      \code{\link{lineardirichlet}}\tab Dirichlet tessellation on a linear network\cr
    }

    The following functions are provided for manipulating a tessellation
    on a network:

    \tabular{ll}{
      \code{\link{as.data.frame.lintess}}\tab convert to data frame \cr
      \code{\link{intersect.lintess}}\tab intersection of two
      tessellations on network \cr
      \code{\link{lineartileindex}}\tab determine which tile contains each
      given point on network \cr
      \code{\link{marks.lintess}}\tab extract marks of each tile \cr
      \code{\link{marks<-.lintess}}\tab assign marks to each tile \cr
      \code{\link{plot.lintess}}\tab plot tessellation on network \cr
      \code{\link{tile.lengths}}\tab compute lengths of tiles \cr
      \code{\link{tilenames.lintess}}\tab  names of tiles \cr
      \code{\link{as.linfun.lintess}}\tab convert tessellation to a
      function \cr
    }

  \bold{Smoothing a point pattern on a linear network:}

  Given a point pattern dataset on a linear network, it is often
  desired to estimate the spatially-varying density or intensity
  of points along the network. For example if the points represent
  road accidents, then we may wish to estimate the spatially-varying
  density of accidents per unit length (over a given period of time).

  Related tasks include estimation of relative risk, and smoothing of
  of values observed at the data points.

  \tabular{ll}{
    \code{\link{density.lpp}}\tab kernel estimate of intensity\cr
    \code{\link{densityEqualSplit}}\tab kernel estimate of intensity
    using equal-split algorithm \cr
    \code{\link{densityHeat.lpp}}\tab kernel estimate of intensity using heat equation\cr
    \code{\link{densityQuick.lpp}}\tab kernel estimate of intensity using a 2D kernel\cr
    \code{\link{densityVoronoi.lpp}}\tab intensity estimate using
    Voronoi-Dirichlet Tessellation\cr
    \code{\link{densityfun.lpp}}\tab kernel estimate of intensity as a
    function \cr
    \code{\link{bw.lppl}}\tab Bandwidth selection for kernel estimate of
    intensity \cr
    \code{\link{bw.voronoi}}\tab bandwidth selection for Voronoi estimator \cr
    \code{\link{relrisk.lpp}}\tab kernel estimate of relative risk\cr
    \code{\link{bw.relrisk.lpp}}\tab  Bandwidth selection for relative
    risk \cr
    \code{\link{Smooth.lpp}}\tab spatial smoothing of observations at
    points \cr

  }
  
  \bold{Exploration of dependence on a covariate:}

  Another task is to investigate how the spatially-varying intensity
  of points depends on an explanatory variable (covariate). The
  covariate may be given as a pixel image on the network
  (class \code{"linim"}) or
  as a function on the network (class \code{"linfun"}).

  \tabular{ll}{
    \code{\link{rhohat.lpp}}\tab nonparametric estimate of intensity as function
    of a covariate\cr
    \code{\link{roc.lpp}}\tab Receiver Operating Characteristic for data on a
    network\cr
    \code{\link{auc.lpp}}\tab  Area Under ROC Curve for data on a network\cr
    \code{\link{cdf.test.lpp}}\tab spatial distribution test for points on a
    linear network\cr
    \code{\link{berman.test.lpp}}\tab Berman's tests for point pattern
    on a network \cr
    \code{\link{sdr.lpp}}\tab Sufficient Dimension Reduction for a point
    pattern on a linear network\cr
  }

  \bold{Summary statistics for a point pattern on a linear network:}

  These are for point patterns on a linear network (class \code{lpp}).
  For unmarked patterns:
  
  \tabular{ll}{
    \code{\link{linearK}} \tab
    \eqn{K} function on linear network \cr
    \code{\link{linearKinhom}} \tab
    inhomogeneous \eqn{K} function on linear network \cr
    \code{\link{linearpcf}} \tab
    pair correlation function on linear network \cr
    \code{\link{linearpcfinhom}} \tab
    inhomogeneous pair correlation on linear network\cr
    \code{\link{linearJinhom}} \tab
    inhomogeneous \eqn{J} function on linear network \cr
    \code{\link{linearKEuclid}} \tab
    \eqn{K} function on linear network using Euclidean distance \cr
    \code{\link{linearKEuclidInhom}} \tab
    inhomogeneous \eqn{K} function on linear network using Euclidean distance\cr
    \code{\link{linearpcfEuclid}} \tab
    pair correlation function on linear network using Euclidean distance \cr
    \code{\link{linearpcfEuclidInhom}} \tab
    inhomogeneous pair correlation on linear network using Euclidean
    distance \cr
  }

  For multitype patterns:
  \tabular{ll}{
    \code{\link{linearKcross}} \tab
    \eqn{K} function between two types of points \cr
    \code{\link{linearKdot}} \tab
    \eqn{K} function from one type to any type \cr
    \code{\link{linearKcross.inhom}} \tab
    Inhomogeneous version of \code{\link{linearKcross}} \cr
    \code{\link{linearKdot.inhom}} \tab
    Inhomogeneous version of \code{\link{linearKdot}} \cr
    \code{\link{linearmarkconnect}} \tab
    Mark connection function  on linear network \cr
    \code{\link{linearmarkequal}} \tab
    Mark equality function on linear network \cr
    \code{\link{linearpcfcross}} \tab
    Pair correlation between two types of points \cr
    \code{\link{linearpcfdot}} \tab
    Pair correlation from one type to any type \cr
    \code{\link{linearpcfcross.inhom}} \tab
    Inhomogeneous version of \code{\link{linearpcfcross}} \cr
    \code{\link{linearpcfdot.inhom}} \tab
    Inhomogeneous version of \code{\link{linearpcfdot}} 
  }

  Related facilities:
  
  \tabular{ll}{
    \code{\link{pairdist.lpp}} \tab distances between pairs  \cr
    \code{\link{crossdist.lpp}} \tab distances between pairs \cr
    \code{\link{nndist.lpp}} \tab nearest neighbour distances  \cr
    \code{\link{nncross.lpp}} \tab nearest neighbour distances  \cr
    \code{\link{nnwhich.lpp}} \tab find nearest neighbours  \cr
    \code{\link{nnfun.lpp}} \tab find nearest data point  \cr
    \code{\link{density.lpp}} \tab kernel smoothing estimator of intensity  \cr
    \code{\link{distfun.lpp}} \tab distance transform  \cr
    \code{\link{envelope.lpp}} \tab simulation envelopes  \cr
    \code{\link{rpoislpp}} \tab simulate Poisson points on linear network \cr
    \code{\link{runiflpp}} \tab simulate random points on a linear network 
  }
  
  It is also possible to fit point process models to \code{lpp} objects.

  \bold{Point process models on a linear network:}

  An object of class \code{"lpp"} represents a pattern of points on
  a linear network. Point process models can also be fitted to these
  objects. Currently only Poisson models can be fitted.

  \tabular{ll}{
    \code{\link{lppm}} \tab point process model on linear network \cr
    \code{\link{anova.lppm}} \tab analysis of deviance for \cr
    \tab point process model on linear network \cr
    \code{\link{envelope.lppm}} \tab simulation envelopes for \cr
    \tab point process model on linear network \cr
    \code{\link{fitted.lppm}} \tab fitted intensity values \cr
    \code{\link{predict.lppm}} \tab model prediction on linear network \cr
    \code{\link{data.lppm}} \tab extract original data \cr
    \code{\link{berman.test.lppm}} \tab Berman's tests of
    goodness-of-fit \cr
    \code{\link{is.marked.lppm}}\tab Recognise whether model is marked\cr
    \code{\link{is.multitype.lppm}}\tab Recognise whether model is multitype\cr
    \code{\link{is.stationary.lppm}}\tab Recognise whether model is
    stationary \cr
    \code{\link{model.frame.lppm}}\tab Extract the variables in model \cr
    \code{\link{model.images.lppm}}\tab Compute images of constructed covariates \cr
    \code{\link{model.matrix.lppm}}\tab Extract design matrix \cr
    \code{\link{plot.lppm}}\tab Plot fitted point process model\cr
    \code{\link{pseudoR2.lppm}}\tab Calculate Pseudo-R-Squared for model \cr
    \code{\link{simulate.lppm}}\tab simulate fitted point process model \cr
  }
  
}

\section{Licence}{
  This library and its documentation are usable under the terms of the "GNU 
  General Public License", a copy of which is distributed with the package.
}
\author{
  \spatstatAuthors.
}
\section{Acknowledgements}{
  Ottmar Cronie,
  Tilman Davies,
  Greg McSwiggan and
  Suman Rakshit
  made substantial contributions of code.
}
\keyword{spatial}
\keyword{package}
\concept{Linear network}