1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
\name{spatstat.linnet-package}
\alias{spatstat.linnet-package}
\alias{spatstat.linnet}
\docType{package}
\title{The spatstat.linnet Package}
\description{
The \pkg{spatstat.linnet} package
belongs to the \pkg{spatstat} family of packages.
It contains the functionality
for analysing spatial data on a linear network.
}
\details{
\pkg{spatstat} is
a family of \R packages
for the statistical analysis of spatial data.
Its main focus is the analysis of
spatial patterns of points in two-dimensional space.
The original \pkg{spatstat} package
has now been split into several
sub-packages.
This sub-package \pkg{spatstat.linnet} contains the
user-level functions from \pkg{spatstat}
that are concerned with spatial data on a linear network.
}
\section{Structure of the spatstat family}{
The orginal \pkg{spatstat} package grew to be very large.
It has now been divided into several \bold{sub-packages}:
\itemize{
\item \pkg{spatstat.utils} containing basic utilities
\item \pkg{spatstat.sparse} containing linear algebra utilities
\item \pkg{spatstat.data} containing datasets
\item \pkg{spatstat.univar} containing functions for estimating
probability distributions of random variables
\item \pkg{spatstat.geom} containing geometrical objects
and geometrical operations
\item \pkg{spatstat.explore} containing the main functionality
for exploratory and non-parametric analysis of spatial data
\item \pkg{spatstat.model} containing the main functionality
for statistical modelling and inference for spatial data
\item \pkg{spatstat.linnet} containing functions for
spatial data on a linear network
\item \pkg{spatstat}, which simply loads the other sub-packages
listed above, and provides documentation.
}
When you install \pkg{spatstat}, these sub-packages are also
installed. Then if you load the \pkg{spatstat} package by typing
\code{library(spatstat)}, the other sub-packages listed above will
automatically be loaded or imported.
For an overview of all the functions available in these sub-packages,
see the help file for \pkg{spatstat} in the \pkg{spatstat} package,
Additionally there are several \bold{extension packages:}
\itemize{
\item \pkg{spatstat.gui} for interactive graphics
\item \pkg{spatstat.local} for local likelihood
(including geographically weighted regression)
\item \pkg{spatstat.Knet} for additional, computationally efficient code
for linear networks
\item \pkg{spatstat.sphere} (under development) for spatial data
on a sphere, including spatial data on the earth's surface
}
The extension packages must be installed separately
and loaded explicitly if needed. They also have separate documentation.
}
\section{Overview of \pkg{spatstat.linnet}}{
A linear network is a subset of the two-dimensional plane
composed of straight line segments. It could represent a road network, for
example. Our code requires that, if two segments intersect each other,
then the intersection is a single point, and the intersection point is
treated as a vertex of the network.
The \pkg{spatstat.linnet} package supports spatial data analysis on
a linear network. The primary aim is to analyse spatial patterns of
points on a network. The points could represent road accidents on a
road network, for example.
The \pkg{spatstat.linnet} package provides code for handling
\itemize{
\item \code{linear networks}
\item \code{point patterns on a linear network}
\item \code{pixel images on a linear network} (where the network is
divided into small segments and a numerical value is assigned to each segment)
\item \code{functions on a linear network} (i.e. functions that are
defined at every location along the network)
\item \code{tessellations of a linear network} (where the network is
subdivided into disjoint subsets with different labels)
\item \code{point process models on a linear network}
}
Here is a list of the main functionality
provided in \pkg{spatstat.linnet}.
\bold{Linear networks}
An object of class \code{"linnet"} represents a linear network.
Examples of such objects include the dataset
\code{\link[spatstat.data]{simplenet}} provided in the package.
Linear network objects can be created by the following functions:
\tabular{ll}{
\code{\link{linnet}} \tab create a linear network \cr
\code{\link{as.linnet}} \tab convert other data to a network \cr
\code{\link{delaunayNetwork}} \tab network of Delaunay triangulation \cr
\code{\link{dirichletNetwork}} \tab network of Dirichlet edges \cr
}
Utilities for manipulating networks include:
\tabular{ll}{
\code{\link{[.linnet}}\tab extract subset of linear network \cr
\code{\link{clickjoin}} \tab interactively join vertices in network \cr \code{\link{joinVertices}} \tab join existing vertices in a network \cr
\code{\link{insertVertices}} \tab insert new vertices at positions
along network \cr
\code{\link{addVertices}} \tab add new vertices, extending a network \cr
\code{\link{thinNetwork}} \tab remove vertices or lines from a network \cr
\code{\link{repairNetwork}} \tab repair internal format \cr
\code{\link{vertices.linnet}} \tab extract the vertices of network \cr
\code{\link{terminalvertices}} \tab find terminal vertices of
network \cr
\code{\link{affine.linnet}} \tab apply affine transformation \cr
\code{\link{shift.linnet}} \tab apply vector translation \cr
\code{\link{rotate.linnet}} \tab apply rotation \cr
\code{\link{rescale.linnet}} \tab rescale the unit of length \cr
\code{\link{scalardilate.linnet}} \tab physically rescale the
network \cr
\code{\link{diameter.linnet}} \tab diameter of linear network \cr
\code{\link{is.connected.linnet}} \tab determine whether network
is connected \cr
\code{\link{lineardisc}} \tab compute disc of given radius in
network \cr
\code{\link{marks.linnet}} \tab extract marks of a network \cr
\code{\link{marks<-.linnet}} \tab assign marks to a network \cr
\code{\link{plot.linnet}} \tab plot a network \cr
\code{\link{as.owin.linnet}} \tab extract window containing network \cr
\code{\link{as.psp.linnet}} \tab extract line segments comprising
network \cr
\code{\link{nsegments.linnet}} \tab number of segments in network\cr
\code{\link{nvertices.linnet}} \tab number of vertices in network\cr
\code{\link{pixellate.linnet}} \tab convert network to 2D pixel
image \cr
\code{\link{print.linnet}} \tab print basic information \cr
\code{\link{summary.linnet}} \tab print summary information \cr
\code{\link{unitname.linnet}} \tab extract name of unit of length \cr
\code{\link{unitname<-.linnet}} \tab assign name of unit of length \cr
\code{\link{vertexdegree}} \tab number of segments meeting
each vertex \cr
\code{\link{volume.linnet}} \tab total length of network \cr
\code{\link{Window.linnet}} \tab extract window containing network \cr
\code{\link{density.linnet}} \tab smoothed 2D spatial density of lines \cr
}
A network is called a tree if it has no closed loops.
The following functions support the creation and manipulation of
trees:
\tabular{ll}{
\code{\link{begins}}\tab check start of character string\cr
\code{\link{branchlabelfun}}\tab tree branch membership labelling
function \cr
\code{\link{deletebranch}}\tab delete a branch of a tree \cr
\code{\link{extractbranch}}\tab extract a branch of a tree \cr
\code{\link{treebranchlabels}}\tab label vertices of a tree by
branch membership \cr
\code{\link{treeprune}}\tab prune tree to given level\cr
}
\bold{Point patterns on a linear network}
An object of class \code{"lpp"} represents a
point pattern on a linear network (for example,
road accidents on a road network).
Examples of such objects include the following datasets
provided in the \pkg{spatstat.data} package:
\tabular{ll}{
\code{\link[spatstat.data]{chicago}} \tab Chicago crime data \cr
\code{\link[spatstat.data]{dendrite}} \tab Dendritic spines data \cr
\code{\link[spatstat.data]{spiders}} \tab Spider webs on mortar lines of brick wall
}
There is also a dataset provided in the extension package
\pkg{spatstat.Knet}:
\tabular{ll}{
\code{wacrashes} \tab Road accidents in Western Australia
}
Point patterns on a network can be created by the following
functions:
\tabular{ll}{
\code{\link{lpp}} \tab create a point pattern on a linear network \cr
\code{\link{as.lpp}} \tab convert other data to point pattern on network \cr
\code{\link{clicklpp}}\tab interactively add points on a linear
Network \cr
\code{\link{crossing.linnet}}\tab crossing points between network and other lines
}
Point patterns on a network can be generated randomly
using the following functions:
\tabular{ll}{
\code{\link{rpoislpp}} \tab Poisson points on linear network \cr
\code{\link{runiflpp}} \tab uniform random points on a linear network \cr
\code{\link{rlpp}}\tab random points on a linear network\cr
\code{\link{rSwitzerlpp}}\tab simulate Switzer-type point process on linear
network \cr
\code{\link{rThomaslpp}}\tab simulate Thomas process on linear network \cr
\code{\link{rcelllpp}}\tab simulate cell process on linear
network \cr
\code{\link{rjitter.lpp}}\tab randomly perturb a point pattern on
a network \cr
}
Functions for manipulating a point pattern on a network include
the following. An object of class \code{"lpp"} also belongs to the
class \code{"ppx"}, for which additional support is available.
\tabular{ll}{
\code{\link{as.ppp.lpp}} \tab convert to 2D point pattern \cr
\code{\link{as.psp.lpp}} \tab extract line segments \cr
\code{\link[spatstat.geom]{marks.ppx}} \tab extract marks associated with points \cr
\code{\link[spatstat.geom]{marks<-.ppx}} \tab assign marks to points on network \cr
\code{\link{nsegments.lpp}} \tab count number of segments \cr
\code{\link{print.lpp}} \tab print basic information \cr
\code{\link{summary.lpp}} \tab print summary information \cr
\code{\link{unitname.lpp}} \tab extract name of unit of length \cr
\code{\link{unitname<-.lpp}} \tab assign name of unit of length \cr
\code{\link{unmark.lpp}} \tab remove marks \cr
\code{\link{subset.lpp}} \tab subset of points satisfying a
condition \cr
\code{\link{[.lpp}} \tab extract subset of point pattern\cr
\code{\link{Window.lpp}} \tab extract window containing network \cr
\code{\link{as.owin.lpp}} \tab extract window containing network \cr
\code{\link{affine.lpp}} \tab apply affine transformation \cr
\code{\link{shift.lpp}} \tab apply vector translation \cr
\code{\link{rotate.lpp}} \tab apply rotation \cr
\code{\link{rescale.lpp}} \tab rescale the unit of length \cr
\code{\link{scalardilate.lpp}} \tab physically rescale the
network and points \cr
\code{\link{connected.lpp}}\tab find connected components of point
pattern on network \cr
\code{\link{cut.lpp}}\tab classify points in a Point Pattern on a
Network \cr
\code{\link{distfun.lpp}}\tab distance map (function) \cr
\code{\link{distmap.lpp}}\tab distance map (image) \cr
\code{\link{domain.lpp}}\tab extract the linear network \cr
\code{\link{identify.lpp}}\tab interactively identify points \cr
\code{\link{is.multitype.lpp}}\tab recognize whether point pattern is
multitype\cr
\code{\link{nncross.lpp}}\tab nearest neighbours\cr
\code{\link{nndist.lpp}}\tab nearest neighbour distances \cr
\code{\link{nnfromvertex}}\tab nearest data point from each vertex\cr
\code{\link{nnfun.lpp}}\tab nearest neighbour map \cr
\code{\link{nnwhich.lpp}}\tab identify nearest neighbours \cr
\code{\link{pairdist.lpp}}\tab pairwise shortest-path distances \cr
\code{\link{plot.lpp}}\tab plot point pattern on linear Network \cr
\code{\link{points.lpp}}\tab draw points on existing plot \cr
\code{\link{superimpose.lpp}}\tab superimpose several point
patterns \cr
\code{\link{text.lpp}} \tab add text labels \cr
\code{\link{unstack.lpp}}\tab separate multiple columns of marks \cr
}
\bold{Pixel images on a network}
An object of class \code{"linim"} represents a pixel image
on a linear network. Effectively, the network is divided into small
segments (lixels) and each small segment is assigned a value,
which could be numeric, factor, logical or complex values.
Pixel images on a network can be created using the following
functions:
\tabular{ll}{
\code{\link{linim}}\tab create pixel image on linear network\cr
\code{\link{as.linim}}\tab convert other data to pixel image on network\cr
}
Functions for manipulating a pixel image on a network include:
\tabular{ll}{
\code{\link{[.linim}} \tab extract subset of pixel image on linear network\cr
\code{\link{[<-.linim}} \tab reset values in subset of image on linear network\cr
\code{\link{Math.linim}}\tab S3 group generic methods for images on a linear network\cr
\code{\link{eval.linim}}\tab evaluate expression involving pixel images on
linear network\cr
\code{\link{as.linnet.linim}} \tab extract linear network \cr
\code{\link{integral.linim}}\tab integral of pixel image on a linear network\cr
\code{\link{mean.linim}} \tab mean of pixel values \cr
\code{\link{median.linim}} \tab median of pixel values \cr
\code{\link{quantile.linim}} \tab quantiles of pixel values \cr
\code{\link{as.data.frame.linim}} \tab convert to data frame \cr
\code{\link{print.linim}} \tab print basic information \cr
\code{\link{summary.linim}} \tab print summary information \cr
\code{\link{affine.linim}} \tab apply affine transformation \cr
\code{\link{scalardilate.linim}} \tab apply scalar dilation \cr
\code{\link{shift.linim}} \tab apply vector translation \cr
\code{\link{pairs.linim}} \tab scatterplot matrix for images \cr
\code{\link{persp.linim}}\tab perspective view of pixel image on network\cr
\code{\link{plot.linim}}\tab plot pixel image on linear network\cr
}
\bold{Functions on a linear network}
An object of class \code{"linfun"} represents a function defined
at any location along the network. Objects of this class are created
by the following functions:
\tabular{ll}{
\code{\link{linfun}}\tab create function on a linear network \cr
\code{\link{as.linfun}}\tab convert other data to function on network \cr
}
The following supporting code is available:
\tabular{ll}{
\code{\link{print.linfun}} \tab print basic information \cr
\code{\link{summary.linfun}} \tab print summary information \cr
\code{\link{plot.linfun}} \tab plot function on network \cr
\code{\link{persp.linfun}}\tab perspective view of function on network\cr
\code{\link{as.data.frame.linfun}} \tab convert to data frame \cr
\code{\link{as.owin.linfun}} \tab extract window containing
network \cr
\code{\link{as.function.linfun}} \tab convert to ordinary \R
function \cr
}
\bold{Tessellations of a linear network}
An object of class \code{"lintess"} represents a tessellation of the
network, that is, a subdivision of the network into disjoint subsets
called \sQuote{tiles}. Objects of this class are created
by the following functions:
\tabular{ll}{
\code{\link{lintess}}\tab create tessellation of network \cr
\code{\link{chop.linnet}} \tab divide a linear network into tiles using
infinite lines \cr
\code{\link{divide.linnet}}\tab divide linear network at cut
points \cr
\code{\link{lineardirichlet}}\tab Dirichlet tessellation on a linear network\cr
}
The following functions are provided for manipulating a tessellation
on a network:
\tabular{ll}{
\code{\link{as.data.frame.lintess}}\tab convert to data frame \cr
\code{\link{intersect.lintess}}\tab intersection of two
tessellations on network \cr
\code{\link{lineartileindex}}\tab determine which tile contains each
given point on network \cr
\code{\link{marks.lintess}}\tab extract marks of each tile \cr
\code{\link{marks<-.lintess}}\tab assign marks to each tile \cr
\code{\link{plot.lintess}}\tab plot tessellation on network \cr
\code{\link{tile.lengths}}\tab compute lengths of tiles \cr
\code{\link{tilenames.lintess}}\tab names of tiles \cr
\code{\link{as.linfun.lintess}}\tab convert tessellation to a
function \cr
}
\bold{Smoothing a point pattern on a linear network:}
Given a point pattern dataset on a linear network, it is often
desired to estimate the spatially-varying density or intensity
of points along the network. For example if the points represent
road accidents, then we may wish to estimate the spatially-varying
density of accidents per unit length (over a given period of time).
Related tasks include estimation of relative risk, and smoothing of
of values observed at the data points.
\tabular{ll}{
\code{\link{density.lpp}}\tab kernel estimate of intensity\cr
\code{\link{densityEqualSplit}}\tab kernel estimate of intensity
using equal-split algorithm \cr
\code{\link{densityHeat.lpp}}\tab kernel estimate of intensity using heat equation\cr
\code{\link{densityQuick.lpp}}\tab kernel estimate of intensity using a 2D kernel\cr
\code{\link{densityVoronoi.lpp}}\tab intensity estimate using
Voronoi-Dirichlet Tessellation\cr
\code{\link{densityfun.lpp}}\tab kernel estimate of intensity as a
function \cr
\code{\link{bw.lppl}}\tab Bandwidth selection for kernel estimate of
intensity \cr
\code{\link{bw.voronoi}}\tab bandwidth selection for Voronoi estimator \cr
\code{\link{relrisk.lpp}}\tab kernel estimate of relative risk\cr
\code{\link{bw.relrisk.lpp}}\tab Bandwidth selection for relative
risk \cr
\code{\link{Smooth.lpp}}\tab spatial smoothing of observations at
points \cr
}
\bold{Exploration of dependence on a covariate:}
Another task is to investigate how the spatially-varying intensity
of points depends on an explanatory variable (covariate). The
covariate may be given as a pixel image on the network
(class \code{"linim"}) or
as a function on the network (class \code{"linfun"}).
\tabular{ll}{
\code{\link{rhohat.lpp}}\tab nonparametric estimate of intensity as function
of a covariate\cr
\code{\link{roc.lpp}}\tab Receiver Operating Characteristic for data on a
network\cr
\code{\link{auc.lpp}}\tab Area Under ROC Curve for data on a network\cr
\code{\link{cdf.test.lpp}}\tab spatial distribution test for points on a
linear network\cr
\code{\link{berman.test.lpp}}\tab Berman's tests for point pattern
on a network \cr
\code{\link{sdr.lpp}}\tab Sufficient Dimension Reduction for a point
pattern on a linear network\cr
}
\bold{Summary statistics for a point pattern on a linear network:}
These are for point patterns on a linear network (class \code{lpp}).
For unmarked patterns:
\tabular{ll}{
\code{\link{linearK}} \tab
\eqn{K} function on linear network \cr
\code{\link{linearKinhom}} \tab
inhomogeneous \eqn{K} function on linear network \cr
\code{\link{linearpcf}} \tab
pair correlation function on linear network \cr
\code{\link{linearpcfinhom}} \tab
inhomogeneous pair correlation on linear network\cr
\code{\link{linearJinhom}} \tab
inhomogeneous \eqn{J} function on linear network \cr
\code{\link{linearKEuclid}} \tab
\eqn{K} function on linear network using Euclidean distance \cr
\code{\link{linearKEuclidInhom}} \tab
inhomogeneous \eqn{K} function on linear network using Euclidean distance\cr
\code{\link{linearpcfEuclid}} \tab
pair correlation function on linear network using Euclidean distance \cr
\code{\link{linearpcfEuclidInhom}} \tab
inhomogeneous pair correlation on linear network using Euclidean
distance \cr
}
For multitype patterns:
\tabular{ll}{
\code{\link{linearKcross}} \tab
\eqn{K} function between two types of points \cr
\code{\link{linearKdot}} \tab
\eqn{K} function from one type to any type \cr
\code{\link{linearKcross.inhom}} \tab
Inhomogeneous version of \code{\link{linearKcross}} \cr
\code{\link{linearKdot.inhom}} \tab
Inhomogeneous version of \code{\link{linearKdot}} \cr
\code{\link{linearmarkconnect}} \tab
Mark connection function on linear network \cr
\code{\link{linearmarkequal}} \tab
Mark equality function on linear network \cr
\code{\link{linearpcfcross}} \tab
Pair correlation between two types of points \cr
\code{\link{linearpcfdot}} \tab
Pair correlation from one type to any type \cr
\code{\link{linearpcfcross.inhom}} \tab
Inhomogeneous version of \code{\link{linearpcfcross}} \cr
\code{\link{linearpcfdot.inhom}} \tab
Inhomogeneous version of \code{\link{linearpcfdot}}
}
Related facilities:
\tabular{ll}{
\code{\link{pairdist.lpp}} \tab distances between pairs \cr
\code{\link{crossdist.lpp}} \tab distances between pairs \cr
\code{\link{nndist.lpp}} \tab nearest neighbour distances \cr
\code{\link{nncross.lpp}} \tab nearest neighbour distances \cr
\code{\link{nnwhich.lpp}} \tab find nearest neighbours \cr
\code{\link{nnfun.lpp}} \tab find nearest data point \cr
\code{\link{density.lpp}} \tab kernel smoothing estimator of intensity \cr
\code{\link{distfun.lpp}} \tab distance transform \cr
\code{\link{envelope.lpp}} \tab simulation envelopes \cr
\code{\link{rpoislpp}} \tab simulate Poisson points on linear network \cr
\code{\link{runiflpp}} \tab simulate random points on a linear network
}
It is also possible to fit point process models to \code{lpp} objects.
\bold{Point process models on a linear network:}
An object of class \code{"lpp"} represents a pattern of points on
a linear network. Point process models can also be fitted to these
objects. Currently only Poisson models can be fitted.
\tabular{ll}{
\code{\link{lppm}} \tab point process model on linear network \cr
\code{\link{anova.lppm}} \tab analysis of deviance for \cr
\tab point process model on linear network \cr
\code{\link{envelope.lppm}} \tab simulation envelopes for \cr
\tab point process model on linear network \cr
\code{\link{fitted.lppm}} \tab fitted intensity values \cr
\code{\link{predict.lppm}} \tab model prediction on linear network \cr
\code{\link{data.lppm}} \tab extract original data \cr
\code{\link{berman.test.lppm}} \tab Berman's tests of
goodness-of-fit \cr
\code{\link{is.marked.lppm}}\tab Recognise whether model is marked\cr
\code{\link{is.multitype.lppm}}\tab Recognise whether model is multitype\cr
\code{\link{is.stationary.lppm}}\tab Recognise whether model is
stationary \cr
\code{\link{model.frame.lppm}}\tab Extract the variables in model \cr
\code{\link{model.images.lppm}}\tab Compute images of constructed covariates \cr
\code{\link{model.matrix.lppm}}\tab Extract design matrix \cr
\code{\link{plot.lppm}}\tab Plot fitted point process model\cr
\code{\link{pseudoR2.lppm}}\tab Calculate Pseudo-R-Squared for model \cr
\code{\link{simulate.lppm}}\tab simulate fitted point process model \cr
}
}
\section{Licence}{
This library and its documentation are usable under the terms of the "GNU
General Public License", a copy of which is distributed with the package.
}
\author{
\spatstatAuthors.
}
\section{Acknowledgements}{
Ottmar Cronie,
Tilman Davies,
Greg McSwiggan and
Suman Rakshit
made substantial contributions of code.
}
\keyword{spatial}
\keyword{package}
\concept{Linear network}
|