1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
|
#'
#' sparse3Darray.R
#'
#' Sparse 3D arrays represented as list(i,j,k,x)
#'
#' Copyright (c) Adrian Baddeley, Ege Rubak and Rolf Turner 2016-2020
#' GNU Public Licence >= 2.0
#'
#' $Revision: 1.45 $ $Date: 2023/06/23 02:26:26 $
#'
sparse3Darray <- function(i=integer(0), j=integer(0), k=integer(0),
x=numeric(0),
dims=c(max(i),max(j),max(k)),
dimnames=NULL, strict=FALSE, nonzero=FALSE) {
dat <- data.frame(i=as.integer(i),
j=as.integer(j),
k=as.integer(k),
x=x)
if(typeof(x) == "complex")
warning(paste(
"complex-valued sparse 3D arrays are supported in spatstat,",
"but complex-valued sparse matrices",
"are not yet supported by the Matrix package"),
call.=FALSE)
stopifnot(length(dims) == 3)
dims <- as.integer(dims)
if(!all(i >= 1 & i <= dims[1])) stop("indices i are outside range")
if(!all(j >= 1 & j <= dims[2])) stop("indices j are outside range")
if(!all(k >= 1 & k <= dims[3])) stop("indices k are outside range")
if(!is.null(dimnames)) {
stopifnot(is.list(dimnames))
stopifnot(length(dimnames) == 3)
notnull <- !sapply(dimnames, is.null)
dimnames[notnull] <- lapply(dimnames[notnull], as.character)
}
if(nonzero || strict) {
#' drop zeroes
ok <- (x != RelevantZero(x))
dat <- dat[ok, , drop=FALSE]
}
if(strict) {
#' arrange in 'R order'
dat <- dat[with(dat, order(k,j,i)), , drop=FALSE]
#' duplicates will be adjacent
dup <- with(dat, c(FALSE, diff(i) == 0 & diff(j) == 0 & diff(k) == 0))
if(any(dup)) {
#' accumulate values at the same array location
retain <- !dup
newrow <- cumsum(retain)
newx <- as(tapply(dat$x, newrow, sum), typeof(dat$x))
newdat <- dat[retain,,drop=FALSE]
newdat$x <- newx
dat <- newdat
}
}
result <- append(as.list(dat),
list(dim=dims, dimnames=dimnames))
class(result) <- "sparse3Darray"
return(result)
}
as.sparse3Darray <- function(x, ...) {
if(inherits(x, "sparse3Darray")) {
y <- x
} else if(inherits(x, c("matrix", "sparseMatrix"))) {
z <- as(x, Class="TsparseMatrix")
dn <- dimnames(x)
dn <- if(is.null(dn)) NULL else c(dn, list(NULL))
one <- if(length(z@i) > 0) 1L else integer(0)
y <- sparse3Darray(i=z@i + 1L, j=z@j + 1L, k=one, x=z@x,
dims=c(dim(x), 1L), dimnames=dn)
} else if(is.array(x)) {
stopifnot(length(dim(x)) == 3)
dimx <- dim(x)
if(prod(dimx) == 0) {
y <- sparse3Darray(, dims=dimx, dimnames=dimnames(x))
} else {
ijk <- which(x != RelevantZero(x), arr.ind=TRUE)
ijk <- cbind(as.data.frame(ijk), x[ijk])
y <- sparse3Darray(i=ijk[,1L], j=ijk[,2L], k=ijk[,3L], x=ijk[,4L],
dims=dimx, dimnames=dimnames(x))
}
} else if(inherits(x, "sparseVector")) {
one <- if(length(x@i) > 0) 1L else integer(0)
y <- sparse3Darray(i=x@i, j=one, k=one, x=x@x,
dims=c(x@length, 1L, 1L))
} else if(is.null(dim(x)) && is.atomic(x)) {
n <- length(x)
dn <- names(x)
if(!is.null(dn)) dn <- list(dn, NULL, NULL)
one <- if(n > 0) 1L else integer(0)
y <- sparse3Darray(i=seq_len(n), j=one, k=one, x=x,
dims=c(n, 1L, 1L), dimnames=dn)
} else if(is.list(x) && length(x) > 0) {
n <- length(x)
if(all(sapply(x, is.matrix))) {
z <- Reduce(abind, x)
y <- as.sparse3Darray(z)
} else if(all(sapply(x, inherits, what="sparseMatrix"))) {
dimlist <- unique(lapply(x, dim))
if(length(dimlist) > 1) stop("Dimensions of matrices do not match")
dimx <- c(dimlist[[1L]], n)
dnlist <- lapply(x, dimnames)
isnul <- sapply(dnlist, is.null)
dnlist <- unique(dnlist[!isnul])
if(length(dnlist) > 1) stop("Dimnames of matrices do not match")
dn <- if(length(dnlist) == 0) NULL else c(dnlist[[1L]], list(NULL))
for(k in seq_len(n)) {
mk <- as(x[[k]], "TsparseMatrix")
kvalue <- if(length(mk@i) > 0) k else integer(0)
dfk <- data.frame(i=mk@i + 1L, j=mk@j + 1L, k=kvalue, x=mk@x)
df <- if(k == 1) dfk else rbind(df, dfk)
}
y <- sparse3Darray(i=df$i, j=df$j, k=df$k, x=df$x,
dims=dimx, dimnames=dn)
} else {
warning("I don't know how to convert a list to a sparse array")
return(NULL)
}
} else {
warning("I don't know how to convert x to a sparse array")
return(NULL)
}
return(y)
}
dim.sparse3Darray <- function(x) { x$dim }
"dim<-.sparse3Darray" <- function(x, value) {
stopifnot(length(value) == 3)
if(!all(inside.range(x$i, c(1, value[1]))))
stop("indices i are outside new range")
if(!all(inside.range(x$j, c(1, value[2]))))
stop("indices j are outside new range")
if(!all(inside.range(x$k, c(1, value[3]))))
stop("indices k are outside new range")
dimx <- dim(x)
x$dim <- value
if(!is.null(dimnames(x))) {
dn <- dimnames(x)
for(n in 1:3) {
if(value[n] < dimx[n]) dn[[n]] <- dn[[n]][1:value[n]] else
if(value[n] > dimx[n]) dn[n] <- list(NULL)
}
dimnames(x) <- dn
}
return(x)
}
dimnames.sparse3Darray <- function(x) { x$dimnames }
"dimnames<-.sparse3Darray" <- function(x, value) {
if(!is.list(value)) value <- list(value)
if(length(value) == 1) value <- rep(value, 3)
x$dimnames <- value
return(x)
}
print.sparse3Darray <- function(x, ...) {
dimx <- dim(x)
cat("Sparse 3D array of dimensions", paste(dimx, collapse="x"), fill=TRUE)
if(prod(dimx) == 0)
return(invisible(NULL))
dn <- dimnames(x) %orifnull% rep(list(NULL), 3)
d3 <- dimx[3]
dn3 <- dn[[3]] %orifnull% as.character(seq_len(d3))
df <- data.frame(i=x$i, j=x$j, k=x$k, x=x$x)
pieces <- split(df, factor(df$k, levels=1:d3))
dim2 <- dimx[1:2]
dn2 <- dn[1:2]
if(typeof(x$x) == "complex") {
splat("Complex-valued")
splat("\t\tReal component:")
stuff <- capture.output(eval(Re(x)))
cat(stuff[-1],sep="\n")
splat("\n\n\t\tImaginary component:")
stuff <- capture.output(eval(Im(x)))
cat(stuff[-1],sep="\n")
} else {
for(k in seq_along(pieces)) {
cat(paste0("\n\t[ , , ", dn3[k], "]\n\n"))
Mi <- with(pieces[[k]],
sparseMatrix(i=i, j=j, x=x, dims=dim2, dimnames=dn2))
stuff <- capture.output(eval(Mi))
#' Remove 'sparse Matrix' header blurb
stuff <- stuff[-1]
if(is.blank(stuff[1]))
stuff <- stuff[-1]
cat(stuff, sep="\n")
}
}
return(invisible(NULL))
}
aperm.sparse3Darray <- function(a, perm=NULL, resize=TRUE, ...) {
if(is.null(perm)) return(a)
stopifnot(length(perm) == 3)
a <- unclass(a)
a[c("i", "j", "k")] <- a[c("i", "j", "k")][perm]
if(resize) {
a$dim <- a$dim[perm]
if(length(a$dimnames)==3) a$dimnames <- a$dimnames[perm]
}
class(a) <- c("sparse3Darray", class(a))
return(a)
}
as.array.sparse3Darray <- function(x, ...) {
zerovalue <- vector(mode=typeof(x$x), length=1L)
z <- array(zerovalue, dim=dim(x), dimnames=dimnames(x))
z[cbind(x$i,x$j,x$k)] <- x$x
return(z)
}
"[.sparse3Darray" <- local({
Extract <- function(x, i,j,k, drop=TRUE, ...) {
dimx <- dim(x)
dn <- dimnames(x) %orifnull% rep(list(NULL), 3)
if(!missing(i) && length(dim(i)) == 2) {
## matrix index
i <- as.matrix(i)
if(!(missing(j) && missing(k)))
stop("If i is a matrix, j and k should not be given", call.=FALSE)
if(ncol(i) != 3)
stop("If i is a matrix, it should have 3 columns", call.=FALSE)
## start with vector of 'zero' answers of the correct type
answer <- sparseVector(x=RelevantEmpty(x$x),
i=integer(0),
length=nrow(i))
## values outside array return NA
if(anybad <- !all(good <- inside3Darray(dim(x), i))) {
bad <- !good
answer[bad] <- NA
}
## if entire array is zero, there is nothing to match
if(length(x$x) == 0)
return(answer)
## restrict attention to entries inside array
igood <- if(anybad) i[good, , drop=FALSE] else i
## match desired indices to sparse entries
varies <- (dimx > 1)
nvary <- sum(varies)
varying <- which(varies)
if(nvary == 3) {
## ---- older code -----
## convert triples of integers to character codes
#### icode <- apply(i, 1, paste, collapse=",") << is too slow >>
## icode <- paste(i[,1], i[,2], i[,3], sep=",")
## dcode <- paste(x$i, x$j, x$k, sep=",")
## ------------------
mgood <- matchIntegerDataFrames(igood, cbind(x$i, x$j, x$k))
} else if(nvary == 2) {
## effectively a sparse matrix
## ---- older code -----
## icode <- paste(i[,varying[1]], i[,varying[2]], sep=",")
## ijk <- cbind(x$i, x$j, x$k)
## dcode <- paste(ijk[,varying[1]], ijk[,varying[2]], sep=",")
## ------------------
ijk <- cbind(x$i, x$j, x$k)
mgood <- matchIntegerDataFrames(igood[,varying,drop=FALSE],
ijk[,varying,drop=FALSE])
} else if(nvary == 1) {
## effectively a sparse vector
## ---- older code -----
## icode <- i[,varying]
## dcode <- switch(varying, x$i, x$j, x$k)
## ------------------
mgood <- match(igood[,varying], switch(varying, x$i, x$j, x$k))
} else {
## effectively a single value
## ---- older code -----
## icode <- rep(1, nrow(i))
## dcode <- 1 # since we know length(x$x) > 0
mgood <- 1
}
## insert any found elements
found <- logical(nrow(i))
found[good] <- foundgood <- !is.na(mgood)
answer[found] <- x$x[mgood[foundgood]]
return(answer)
}
if(!(missing(i) && missing(j) && missing(k))) {
I <- grokIndexVector(if(missing(i)) NULL else i, dimx[1], dn[[1]])
J <- grokIndexVector(if(missing(j)) NULL else j, dimx[2], dn[[2]])
K <- grokIndexVector(if(missing(k)) NULL else k, dimx[3], dn[[3]])
IJK <- list(I,J,K)
if(!all(sapply(lapply(IJK, getElement, name="full"), is.null))) {
## some indices exceed array bounds;
## result is a full array containing NA's
fullindices <- lapply(IJK, fullIndexSequence)
strictindices <- lapply(IJK, strictIndexSequence)
result <- array(data=RelevantNA(x$x), dim=lengths(fullindices))
matches <- mapply(match, x=fullindices, table=strictindices)
ok <- lapply(lapply(matches, is.na), "!")
result[ok[[1]], ok[[2]], ok[[3]]] <-
as.array(x)[matches[[1]][ok[[1]]],
matches[[2]][ok[[2]]],
matches[[3]][ok[[3]]]]
if(drop) result <- result[,,,drop=TRUE]
return(result)
}
IJK <- lapply(IJK, getElement, name="strict")
I <- IJK[[1]]
J <- IJK[[2]]
K <- IJK[[3]]
#' number of values to be returned along each margin
newdims <- sapply(IJK, getElement, name="n")
#' dimnames of return array
newdn <- lapply(IJK, getElement, name="s")
#' find all required data (not necessarily in required order)
inI <- I$lo
inJ <- J$lo
inK <- K$lo
df <- data.frame(i=x$i, j=x$j, k=x$k, x=x$x)
use <- with(df, inI[i] & inJ[j] & inK[k])
df <- df[use, ,drop=FALSE]
#' contract sub-array to (1:n) * (1:m) * (1:l)
df <- transform(df,
i = cumsum(inI)[i],
j = cumsum(inJ)[j],
k = cumsum(inK)[k])
Imap <- I$map
Jmap <- J$map
Kmap <- K$map
if(nrow(df) == 0 || (is.null(Imap) && is.null(Jmap) && is.null(Kmap))) {
## return values are already in correct position
outdf <- df
} else {
#' invert map to determine output positions (reorder/repeat entries)
snI <- seq_len(I$n)
snJ <- seq_len(J$n)
snK <- seq_len(K$n)
imap <- Imap %orifnull% snI
jmap <- Jmap %orifnull% snJ
kmap <- Kmap %orifnull% snK
whichi <- split(seq_along(imap), factor(imap, levels=snI))
whichj <- split(seq_along(jmap), factor(jmap, levels=snJ))
whichk <- split(seq_along(kmap), factor(kmap, levels=snK))
dat.i <- whichi[df$i]
dat.j <- whichj[df$j]
dat.k <- whichk[df$k]
stuff <- mapply(expandwithdata,
i=dat.i, j=dat.j, k=dat.k, x=df$x,
SIMPLIFY=FALSE)
outdf <- rbindCompatibleDataFrames(stuff)
}
x <- sparse3Darray(i=outdf$i, j=outdf$j, k=outdf$k, x=outdf$x,
dims=newdims, dimnames=newdn)
dimx <- newdims
dn <- newdn
}
if(drop) {
retain <- (dimx > 1)
nretain <- sum(retain)
if(nretain == 2) {
#' result is a matrix
retained <- which(retain)
newi <- getElement(x, name=c("i","j","k")[ retained[1] ])
newj <- getElement(x, name=c("i","j","k")[ retained[2] ])
newdim <- dimx[retain]
newdn <- dn[retain]
return(sparseMatrix(i=newi, j=newj, x=x$x, dims=newdim, dimnames=newdn))
} else if(nretain == 1) {
#' sparse vector
retained <- which(retain)
newi <- getElement(x, name=c("i","j","k")[retained])
#' ensure 'strict'
ord <- order(newi)
newi <- newi[ord]
newx <- x$x[ord]
if(any(dup <- c(FALSE, diff(newi) == 0))) {
retain <- !dup
ii <- cumsum(retain)
newi <- newi[retain]
newx <- as(tapply(newx, ii, sum), typeof(newx))
}
x <- sparseVector(x=newx, i=newi, length=dimx[retained])
} else if(nretain == 0) {
#' single value
x <- as.vector(as.array(x))
}
}
return(x)
}
expandwithdata <- function(i, j, k, x) {
z <- expand.grid(i=i, j=j, k=k)
if(nrow(z) > 0)
z$x <- x
return(z)
}
Extract
})
rbindCompatibleDataFrames <- function(x) {
#' faster version of Reduce(rbind, x) when entries are known to be compatible
nama2 <- colnames(x[[1]])
y <- vector(mode="list", length=length(nama2))
names(y) <- nama2
for(nam in nama2)
y[[nam]] <- unlist(lapply(x, getElement, name=nam))
return(as.data.frame(y))
}
"[<-.sparse3Darray" <- function(x, i, j, k, ..., value) {
dimx <- dim(x)
dn <- dimnames(x) %orifnull% rep(list(NULL), 3)
#' interpret indices
if(!missing(i) && length(dim(i)) == 2) {
## matrix index
ijk <- as.matrix(i)
if(!(missing(j) && missing(k)))
stop("If i is a matrix, j and k should not be given", call.=FALSE)
if(ncol(ijk) != 3)
stop("If i is a matrix, it should have 3 columns", call.=FALSE)
if(!all(inside3Darray(dimx, i)))
stop("Some indices lie outside array limits", call.=FALSE)
if(nrow(ijk) == 0)
return(x) # no items to replace
## assemble data frame
xdata <- data.frame(i=x$i, j=x$j, k=x$k, x=x$x)
## match xdata into ijk (not necessarily the first match in original order)
m <- matchIntegerDataFrames(xdata[,1:3,drop=FALSE], ijk)
## ------- OLDER VERSION: --------
## convert triples of integers to character codes
## icode <- apply(ijk, 1, paste, collapse=",") << is too slow >>
## icode <- paste(ijk[,1], ijk[,2], ijk[,3], sep=",")
## xcode <- paste(x$i, x$j, x$k, sep=",")
## m <- match(xcode, icode)
## -------------------------------
## remove any matches, retaining only data that do not match 'i'
xdata <- xdata[is.na(m), , drop=FALSE] # sic
## ensure replacement value is vector-like
value <- as.vector(value)
nv <- length(value)
if(nv != nrow(i) && nv != 1)
stop(paste("Number of items to replace", paren(nrow(i)),
"does not match number of items given", paren(nv)),
call.=FALSE)
vdata <- data.frame(i=ijk[,1], j=ijk[,2], k=ijk[,3], x=value)
## combine
ydata <- rbind(xdata, vdata)
y <- with(ydata, sparse3Darray(i=i,j=j,k=k,x=x,
dims=dimx, dimnames=dn, strict=TRUE))
return(y)
}
I <- grokIndexVector(if(missing(i)) NULL else i, dimx[1], dn[[1]])
J <- grokIndexVector(if(missing(j)) NULL else j, dimx[2], dn[[2]])
K <- grokIndexVector(if(missing(k)) NULL else k, dimx[3], dn[[3]])
IJK <- list(I,J,K)
if(!all(sapply(lapply(IJK, getElement, name="full"), is.null))) {
warning("indices exceed array bounds; extending the array dimensions",
call.=FALSE)
fullindices <- lapply(IJK, fullIndexSequence)
## strictindices <- lapply(IJK, strictIndexSequence)
dnew <- pmax(dimx, sapply(fullindices, max))
result <- array(data=RelevantZero(x$x), dim=dnew)
result[cbind(x$i, x$j, x$k)] <- x$x
result[fullindices[[1]], fullindices[[2]], fullindices[[3]]] <- value
result <- as.sparse3Darray(result)
return(result)
}
IJK <- lapply(IJK, getElement, name="strict")
if(all(sapply(IJK, getElement, name="nind") == 0)) {
# no elements are indexed
return(x)
}
I <- IJK[[1]]
J <- IJK[[2]]
K <- IJK[[3]]
#' extract current array entries
xdata <- data.frame(i=x$i, j=x$j, k=x$k, x=x$x)
#' identify data volume that will be overwritten
inI <- I$lo
inJ <- J$lo
inK <- K$lo
#' remove data that will be overwritten
retain <- !with(xdata, inI[i] & inJ[j] & inK[k])
xdata <- xdata[retain,,drop=FALSE]
#' expected dimensions of 'value' implied by indices
dimVshould <- sapply(IJK, getElement, name="nind")
dimV <- dim(value)
if(length(dimV) == 3) {
#' both source and destination are 3D
if(all(dimVshould == dimV)) {
#' replace 3D block by 3D block of same dimensions
value <- as.sparse3Darray(value)
vdata <- data.frame(i=value$i, j=value$j, k=value$k, x=value$x)
# determine positions of replacement data in original array
vdata <- transform(vdata,
i=replacementIndex(i, I),
j=replacementIndex(j, J),
k=replacementIndex(k, K))
} else
stop(paste("Replacement value has wrong dimensions:",
paste(dimV, collapse="x"),
"instead of",
paste(dimVshould, collapse="x")),
call.=FALSE)
} else if(is.null(dimV)) {
#' replacement value is a vector or sparseVector
value <- as(value, "sparseVector")
iv <- value@i
xv <- value@x
nv <- value@length
collapsing <- (dimVshould == 1)
realdim <- sum(!collapsing)
if(nv == 1) {
#' replacement value is a constant
value <- as.vector(value[1])
if(identical(value, RelevantZero(x$x))) {
#' assignment causes relevant entries to be set to zero;
#' these entries have already been deleted from 'xdata';
#' nothing to add
vdata <- data.frame(i=integer(0), j=integer(0), k=integer(0),
x=x$x[integer(0)])
} else {
#' replicate the constant
vdata <- expand.grid(i=I$i, j=J$i, k=K$i, x=as.vector(value[1]))
}
} else if(realdim == 0) {
stop(paste("Replacement value has too many entries:",
nv, "instead of 1"),
call.=FALSE)
} else if(realdim == 1) {
theindex <- which(!collapsing)
# target slice is one-dimensional
if(nv != dimVshould[theindex])
stop(paste("Replacement value has wrong number of entries:",
nv, "instead of", dimVshould[theindex]),
call.=FALSE)
newpos <- replacementIndex(iv, IJK[[theindex]])
vdata <- switch(theindex,
data.frame(i=newpos, j=J$i, k=K$i, x=xv),
data.frame(i=I$i, j=newpos, k=K$i, x=xv),
data.frame(i=I$i, j=J$i, k=newpos, x=xv))
} else {
# target slice is two-dimensional
sdim <- dimVshould[!collapsing]
sd1 <- sdim[1]
sd2 <- sdim[2]
if(nv != sd1)
stop(paste("Length of replacement vector", paren(nv),
"does not match dimensions of array subset",
paren(paste(dimVshould, collapse="x"))),
call.=FALSE)
firstindex <- which(!collapsing)[1]
secondindex <- which(!collapsing)[2]
pos1 <- replacementIndex(iv, IJK[[firstindex]])
pos2 <- replacementIndex(seq_len(sd2), IJK[[secondindex]])
xv <- rep(xv, sd2)
pos2 <- rep(pos2, each=length(pos1))
pos1 <- rep(pos1, sd2)
pos3 <- if(length(pos1)) IJK[[which(collapsing)]]$i else integer(0)
vdata <- data.frame(i=pos3, j=pos3, k=pos3, x=xv)
vdata[,firstindex] <- pos1
vdata[,secondindex] <- pos2
}
} else if(identical(dimVshould[dimVshould > 1], dimV[dimV > 1])) {
#' lower dimensional sets of the same dimension
value <- value[drop=TRUE]
dimV <- dim(value)
dropping <- (dimVshould == 1)
if(length(dimV) == 2) {
value <- as(value, "TsparseMatrix")
iv <- value@i + 1L
jv <- value@j + 1L
xv <- value@x
firstindex <- which(!dropping)[1]
secondindex <- which(!dropping)[2]
pos1 <- replacementIndex(iv, IJK[[firstindex]])
pos2 <- replacementIndex(jv, IJK[[secondindex]])
pos3 <- if(length(pos1)) IJK[[which(dropping)]]$i else integer(0)
vdata <- data.frame(i=pos3, j=pos3, k=pos3, x=xv)
vdata[,firstindex] <- pos1
vdata[,secondindex] <- pos2
} else {
value <- as(value, "sparseVector")
iv <- value@i
xv <- value@x
vdata <- data.frame(i=if(dropping[1]) I$i else replacementIndex(iv, I),
j=if(dropping[2]) J$i else replacementIndex(iv, J),
k=if(dropping[3]) K$i else replacementIndex(iv, K),
x=xv)
}
} else
stop(paste("Replacement value has wrong dimensions:",
paste(dimV, collapse="x"),
"instead of",
paste(dimVshould, collapse="x")),
call.=FALSE)
## combine
if(nrow(vdata) > 0)
xdata <- rbind(xdata, vdata)
y <- with(xdata, sparse3Darray(i=i,j=j,k=k,x=x,
dims=dimx, dimnames=dn, strict=TRUE))
return(y)
}
bind.sparse3Darray <- function(A,B,along) {
A <- as.sparse3Darray(A)
B <- as.sparse3Darray(B)
check.1.integer(along)
stopifnot(along %in% 1:3)
dimA <- dim(A)
dimB <- dim(B)
if(!all(dimA[-along] == dimB[-along]))
stop("dimensions of A and B do not match")
dimC <- dimA
dimC[along] <- dimA[along] + dimB[along]
# extract data
Adf <- SparseEntries(A)
Bdf <- SparseEntries(B)
# realign 'B' coordinate
Bdf[,along] <- Bdf[,along] + dimA[along]
# combine
C <- EntriesToSparse(rbind(Adf, Bdf), dimC)
# add dimnames
dnA <- dimnames(A)
dnB <- dimnames(B)
if(!is.null(dnA) || !is.null(dnB)) {
if(length(dnA) != 3) dnA <- rep(list(NULL), 3)
if(length(dnB) != 3) dnB <- rep(list(NULL), 3)
dnC <- dnA
dnC[[along]] <- c(dnA[[along]] %orifnull% rep("", dimA[along]),
dnB[[along]] %orifnull% rep("", dimB[along]))
dimnames(C) <- dnC
}
return(C)
}
anyNA.sparse3Darray <- function(x, recursive=FALSE) {
anyNA(x$x)
}
unionOfSparseIndices <- function(A, B) {
#' A, B are data frames of indices i, j, k
ijk <- unique(rbind(A, B))
colnames(ijk) <- c("i", "j", "k")
return(ijk)
}
Ops.sparse3Darray <- function(e1,e2=NULL){
if(nargs() == 1L) {
switch(.Generic,
"!" = {
result <- do.call(.Generic, list(as.array(e1)))
},
"-" = ,
"+" = {
result <- e1
result$x <- do.call(.Generic, list(e1$x))
},
stop(paste("Unary", sQuote(.Generic),
"is undefined for sparse 3D arrays."), call.=FALSE))
return(result)
}
# binary operation
# Decide whether full or sparse
elist <- list(e1, e2)
isfull <- sapply(elist, inherits, what=c("matrix", "array"))
if(any(isfull) &&
any(sapply(lapply(elist[isfull], dim), prod) > 1)) {
# full array
n1 <- length(dim(e1))
n2 <- length(dim(e2))
e1 <- if(n1 == 3) as.array(e1) else
if(n1 == 2) as.matrix(e1) else as.vector(as.matrix(as.array(e1)))
e2 <- if(n2 == 3) as.array(e2) else
if(n2 == 2) as.matrix(e2) else as.vector(as.matrix(as.array(e2)))
result <- do.call(.Generic, list(e1, e2))
return(result)
}
# sparse result (usually)
e1 <- as.sparse3Darray(e1)
e2 <- as.sparse3Darray(e2)
dim1 <- dim(e1)
dim2 <- dim(e2)
mode1 <- typeof(e1$x)
mode2 <- typeof(e2$x)
zero1 <- vector(mode=mode1, length=1L)
zero2 <- vector(mode=mode2, length=1L)
if(prod(dim1) == 1) {
## e1 is constant
e1 <- as.vector(as.array(e1))
z12 <- do.call(.Generic, list(e1, zero2))
if(!isRelevantZero(z12)) {
# full matrix/array will be generated
result <- do.call(.Generic, list(e1, as.array(e2)[drop=TRUE]))
} else {
# sparse
result <- e2
result$x <- do.call(.Generic, list(e1, e2$x))
}
return(result)
}
if(prod(dim2) == 1) {
## e2 is constant
e2 <- as.vector(as.array(e2))
z12 <- do.call(.Generic, list(zero1, e2))
if(!isRelevantZero(z12)) {
# full matrix/array will be generated
result <- do.call(.Generic, list(as.array(e1)[drop=TRUE], e2))
} else {
# sparse
result <- e1
result$x <- do.call(.Generic, list(e1$x, e2))
}
return(result)
}
z12 <- do.call(.Generic, list(zero1, zero2))
if(!isRelevantZero(z12)) {
#' Result is an array
e1 <- as.array(e1)
e2 <- as.array(e2)
result <- do.call(.Generic, list(e1, e2))
return(result)
}
# Result is sparse
if(identical(dim1, dim2)) {
#' extents are identical
ijk1 <- SparseIndices(e1)
ijk2 <- SparseIndices(e2)
if(identical(ijk1, ijk2)) {
#' patterns of nonzero entries are identical
ijk <- ijk1
values <- do.call(.Generic, list(e1$x, e2$x))
} else {
#' different patterns of nonzero entries
ijk <- unionOfSparseIndices(ijk1, ijk2)
values <- as.vector(do.call(.Generic, list(e1[ijk], e2[ijk])))
}
dn <- dimnames(e1) %orifnull% dimnames(e2)
result <- sparse3Darray(i=ijk$i, j=ijk$j, k=ijk$k, x=values,
dims=dim1, dimnames=dn, strict=TRUE)
return(result)
}
drop1 <- (dim1 == 1)
drop2 <- (dim2 == 1)
if(!any(drop1 & !drop2) && identical(dim1[!drop2], dim2[!drop2])) {
#' dim2 is a slice of dim1
ijk1 <- data.frame(i=e1$i, j=e1$j, k=e1$k)
ijk2 <- data.frame(i=e2$i, j=e2$j, k=e2$k)
expanding <- which(drop2 & !drop1)
if(length(expanding) == 1) {
n <- dim1[expanding]
m <- nrow(ijk2)
ijk2 <- as.data.frame(lapply(ijk2, rep, times=n))
ijk2[,expanding] <- rep(seq_len(n), each=m)
ijk <- unionOfSparseIndices(ijk1, ijk2)
ijkdrop <- ijk
if(nrow(ijkdrop) > 0) ijkdrop[,expanding] <- 1
xout <- do.call(.Generic, list(e1[ijk], e2[ijkdrop]))
result <- sparse3Darray(i=ijk[,1L], j=ijk[,2L], k=ijk[,3L],
x=as.vector(xout),
dims=dim1, dimnames=dimnames(e1), strict=TRUE)
return(result)
}
}
if(!any(drop2 & !drop1) && identical(dim2[!drop1], dim1[!drop1])) {
#' dim1 is a slice of dim2
ijk1 <- data.frame(i=e1$i, j=e1$j, k=e1$k)
ijk2 <- data.frame(i=e2$i, j=e2$j, k=e2$k)
expanding <- which(drop1 & !drop2)
if(length(expanding) == 1) {
n <- dim2[expanding]
m <- nrow(ijk1)
ijk1 <- as.data.frame(lapply(ijk1, rep, times=n))
ijk1[,expanding] <- rep(seq_len(n), each=m)
ijk <- unionOfSparseIndices(ijk1, ijk2)
ijkdrop <- ijk
if(nrow(ijkdrop) > 0) ijkdrop[,expanding] <- 1L
xout <- do.call(.Generic, list(e1[ijkdrop], e2[ijk]))
result <- sparse3Darray(i=ijk[,1L], j=ijk[,2L], k=ijk[,3L],
x=as.vector(xout),
dims=dim2, dimnames=dimnames(e2), strict=TRUE)
return(result)
}
}
if(all(drop1[-1]) && dim1[1L] == dim2[1L]) {
#' e1 is a (sparse) vector matching the first extent of e2
if(.Generic %in% c("*", "&")) {
# result is sparse
ijk <- data.frame(i=e2$i, j=e2$j, k=e2$k)
ones <- rep(1L, nrow(ijk))
i11 <- data.frame(i=e2$i, j=ones, k=ones)
xout <- do.call(.Generic, list(e1[i11], e2[ijk]))
result <- sparse3Darray(i=ijk[,1L], j=ijk[,2L], k=ijk[,3L],
x=as.vector(xout),
dims=dim2, dimnames=dimnames(e2), strict=TRUE)
} else {
# result is full array
e1 <- as.array(e1)[,,,drop=TRUE]
e2 <- as.array(e2)
result <- do.call(.Generic, list(e1, e2))
}
return(result)
}
stop(paste("Non-conformable arrays:",
paste(dim1, collapse="x"), "and", paste(dim2, collapse="x")),
call.=FALSE)
}
Math.sparse3Darray <- function(x, ...){
z <- RelevantZero(x$x)
fz <- do.call(.Generic, list(z))
if(!isRelevantZero(fz)) {
# result is a full array
result <- do.call(.Generic, list(as.array(x), ...))
return(result)
}
x$x <- do.call(.Generic, list(x$x))
return(x)
}
Complex.sparse3Darray <- function(z) {
oo <- RelevantZero(z$x)
foo <- do.call(.Generic, list(z=oo))
if(!isRelevantZero(foo)) {
# result is a full array
result <- do.call(.Generic, list(z=as.array(z)))
return(result)
}
z$x <- do.call(.Generic, list(z=z$x))
return(z)
}
Summary.sparse3Darray <- function(..., na.rm=FALSE) {
argh <- list(...)
is3D <- sapply(argh, inherits, what="sparse3Darray")
if(any(is3D)) {
xvalues <- lapply(argh[is3D], getElement, name="x")
fullsizes <- sapply(lapply(argh[is3D], dim), prod)
argh[is3D] <- xvalues
#' zero entry should be appended if and only if there are any empty cells
zeroes <- lapply(xvalues, RelevantZero)
zeroes <- zeroes[lengths(xvalues) < fullsizes]
argh <- append(argh, zeroes)
}
rslt <- do.call(.Generic, append(argh, list(na.rm=na.rm)))
return(rslt)
}
SparseIndices <- function(x) {
#' extract indices of entries of sparse vector/matrix/array
nd <- length(dim(x))
if(nd > 3)
stop("Arrays of more than 3 dimensions are not supported", call.=FALSE)
if(nd == 0 || nd == 1) {
x <- as(x, "sparseVector")
df <- data.frame(i=x@i)
} else if(nd == 2) {
x <- as(x, "TsparseMatrix")
df <- data.frame(i=x@i + 1L, j=x@j + 1L)
} else if(nd == 3) {
x <- as.sparse3Darray(x)
df <- data.frame(i=x$i, j=x$j, k=x$k)
}
return(df)
}
SparseEntries <- function(x) {
#' extract entries of sparse vector/matrix/array
nd <- length(dim(x))
if(nd > 3)
stop("Arrays of more than 3 dimensions are not supported", call.=FALSE)
if(nd == 0 || nd == 1) {
x <- as(x, "sparseVector")
df <- data.frame(i=x@i, x=x@x)
} else if(nd == 2) {
x <- as(x, "TsparseMatrix")
df <- data.frame(i=x@i + 1L, j=x@j + 1L, x=x@x)
} else if(nd == 3) {
x <- as.sparse3Darray(x)
df <- data.frame(i=x$i, j=x$j, k=x$k, x=x$x)
}
return(df)
}
EntriesToSparse <- function(df, dims) {
#' convert data frame of indices and values
#' to sparse vector/matrix/array
nd <- length(dims)
if(nd == 0)
return(with(df, as(sum(x), typeof(x))))
sn <- seq_len(nd)
colnames(df)[sn] <- c("i","j","k")[sn]
if(nd == 1) {
#' sparse vector: duplicate entries not allowed
df <- df[with(df, order(i)), , drop=FALSE]
dup <- c(FALSE, with(df, diff(i) == 0))
if(any(dup)) {
#' accumulate values at the same array location
first <- !dup
newi <- cumsum(first)
newx <- as(tapply(df$x, newi, sum), typeof(df$x))
df <- data.frame(i=df$i[first], x=newx)
}
result <- with(df, sparseVector(i=i, x=x, length=dims))
} else if(nd == 2) {
result <- with(df, sparseMatrix(i=i, j=j, x=x, dims=dims))
} else if(nd == 3) {
result <- with(df, sparse3Darray(i=i, j=j, k=k, x=x, dims=dims))
}
return(result)
}
evalSparse3Dentrywise <- function(expr, envir) {
## DANGER: this assumes all sparse arrays in the expression
## have the same pattern of nonzero elements!
e <- as.expression(substitute(expr))
## get names of all variables in the expression
varnames <- all.vars(e)
allnames <- all.names(e, unique=TRUE)
funnames <- allnames[!(allnames %in% varnames)]
if(length(varnames) == 0)
stop("No variables in this expression")
## get the values of the variables
if(missing(envir)) {
envir <- parent.frame() # WAS: sys.parent()
} else if(is.list(envir)) {
envir <- list2env(envir, parent=parent.frame())
}
vars <- mget(varnames, envir=envir, inherits=TRUE, ifnotfound=list(NULL))
funs <- mget(funnames, envir=envir, inherits=TRUE, ifnotfound=list(NULL))
## find out which variables are sparse3Darray
isSpud <- sapply(vars, inherits, what="sparse3Darray")
if(!any(isSpud))
stop("No sparse 3D arrays in this expression")
spuds <- vars[isSpud]
template <- spuds[[1L]]
## replace each array by its entries, and evaluate
spudvalues <- lapply(spuds, getElement, name="x")
## minimal safety check
if(length(unique(lengths(spudvalues))) > 1)
stop("Different numbers of sparse entries", call.=FALSE)
vars[isSpud] <- spudvalues
v <- eval(e, append(vars, funs))
## reshape as 3D array
result <- sparse3Darray(x=v,
i=template$i,
j=template$j,
k=template$k,
dims=dim(template),
dimnames=dimnames(template))
return(result)
}
|