File: sparsecommon.R

package info (click to toggle)
r-cran-spatstat.sparse 3.1-0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 312 kB
  • sloc: ansic: 442; sh: 13; makefile: 2
file content (300 lines) | stat: -rw-r--r-- 9,875 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#'
#'    sparsecommon.R
#'
#'  Utilities for sparse arrays
#'
#'  Copyright (c) Adrian Baddeley, Ege Rubak and Rolf Turner 2016-2020
#'  GNU Public Licence >= 2.0
#' 
#'  $Revision: 1.19 $  $Date: 2023/02/28 01:52:43 $
#'

#'  .............. completely generic ....................


inside3Darray <- function(d, i, j, k) {
  stopifnot(length(d) == 3)
  if(length(dim(i)) == 2 && missing(j) && missing(k)) {
    stopifnot(ncol(i) == 3)
    j <- i[,2]
    k <- i[,3]
    i <- i[,1]
  }
  ans <- inside.range(i, c(1, d[1])) &
         inside.range(j, c(1, d[2])) &
         inside.range(k, c(1, d[3]))
  return(ans)
}

#'  .............. depends on Matrix package ................

sparseVectorCumul <- function(x, i, length) {
  #' extension of 'sparseVector' to allow repeated indices 
  #'   (the corresponding entries are added)
  z <- tapply(x, list(factor(i, levels=1:length)), sum)
  z <- z[!is.na(z)]
  sparseVector(i=as.integer(names(z)), x=as.numeric(z), length=length)
}

#'  .............. code that mentions sparse3Darray ................

expandSparse <- function(x, n, across) {
  #' x is a sparse vector/matrix; replicate it 'n' times
  #' and form a sparse matrix/array
  #' in which each slice along the 'across' dimension is identical to 'x'
  #' Default is across = length(dim(x)) + 1
  check.1.integer(n)
  stopifnot(n >= 1)
  dimx <- dim(x)
  if(is.null(dimx)) {
    if(inherits(x, "sparseVector")) dimx <- x@length else
    if(is.vector(x)) dimx <- length(x) else
    stop("Format of x is not understood", call.=FALSE)
  }
  nd <- length(dimx)
  if(missing(across)) across <- nd + 1L else {
    check.1.integer(across)
    if(!(across %in% (1:(nd+1L))))
      stop(paste("Argument 'across' must be an integer from 1 to", nd+1L),
           call.=FALSE)
  }
  if(nd == 1) {
    if(inherits(x, "sparseVector")) {
      m <- length(x@x)
      y <- switch(across,
                  sparseMatrix(i=rep(1:n, times=m),
		               j=rep(x@i, each=n),
			       x=rep(x@x, each=n),
			       dims=c(n, dimx)),
                  sparseMatrix(i=rep(x@i, each=n),
		  	       j=rep(1:n, times=m),
			       x=rep(x@x, each=n),
			       dims=c(dimx, n)))
    } else {
      y <- switch(across,
                  outer(1:n, x, function(a,b) b),
                  outer(x, 1:n, function(a,b) a))
    }
  } else if(nd == 2) {
    if(inherits(x, "sparseMatrix")) {
      z <- as(x, "TsparseMatrix")
      m <- length(z@x)
      y <- switch(across,
                  sparse3Darray(i=rep(1:n, times=m),
		                j=rep(z@i + 1L, each=n),
				k=rep(z@j + 1L, each=n),
				x=rep(z@x, each=n),
				dims=c(n, dimx)),
                  sparse3Darray(i=rep(z@i + 1L, each=n),
		                j=rep(1:n, times=m),
				k=rep(z@j + 1L, each=n),
				x=rep(z@x, each=n),
				dims=c(dimx[1], n, dimx[2])),
                  sparse3Darray(i=rep(z@i + 1L, each=n),
		                j=rep(z@j + 1L, each=n),
				k=rep(1:n, times=m),
				x=rep(z@x, each=n),
				dims=c(dimx, n)))
    } else stop("Not yet implemented for full arrays")
  } else 
     stop("Not implemented for arrays of more than 2 dimensions", call.=FALSE)
  return(y)
}

mapSparseEntries <- function(x, margin, values, conform=TRUE, across) {
  # replace the NONZERO entries of sparse vector, matrix or array
  # by values[l] where l is one of the slice indices
  dimx <- dim(x)
  if(is.null(dimx)) {
    if(inherits(x, "sparseVector")) dimx <- x@length else
    if(is.vector(x)) dimx <- length(x) else
    stop("Format of x is not understood", call.=FALSE)
  }
  if(length(dimx) == 1) {
    x <- as(x, "sparseVector")
    i <- x@i
    if(length(i) == 0) {
      # no entries
      return(x)
    }
    if(!missing(margin) && !is.null(margin)) stopifnot(margin == 1)
    check.anySparseVector(values, dimx, things="entries", oneok=TRUE)
    nv <- if(inherits(values, "sparseVector")) values@length else length(values)
    yvalues <- if(nv > 1) as.vector(values[i]) else rep(values[1], length(i))
    y <- sparseVector(i=i, x=yvalues, length=dimx)
    return(y)
  }
  if(inherits(x, "sparseMatrix")) {
    x <- as(x, Class="TsparseMatrix")
    if(length(x@i) == 0) {
      # no entries
      return(x)
    }
    check.1.integer(margin)
    stopifnot(margin %in% 1:2)
    check.anySparseVector(values, dimx[margin],
                          things=c("rows","columns")[margin],
                          oneok=TRUE)
    nv <- if(inherits(values, "sparseVector")) values@length else length(values)
    i <- x@i + 1L
    j <- x@j + 1L
    yindex <- switch(margin, i, j)
    yvalues <- if(nv > 1) values[yindex] else rep(values[1], length(yindex))
    y <- sparseMatrix(i=i, j=j, x=yvalues, dims=dimx, dimnames=dimnames(x))
    y <- drop0(y)
    return(y)
  }
  if(inherits(x, "sparse3Darray")) {
    if(length(x$i) == 0) {
      # no entries
      return(x)
    }
    ijk <- cbind(i=x$i, j=x$j, k=x$k)
    if(conform) {
      #' ensure common pattern of sparse values
      #' in each slice on 'across' margin
      force(across)
      nslice <- dimx[across]
      #' pick one representative of each equivalence class
      ## ---- old code ---------
      ## dup <- duplicated(ijk[,-across,drop=FALSE])
      ## ijk <- ijk[!dup, , drop=FALSE]
      ## ---------------------
      use <- representativeRows(ijk[,-across,drop=FALSE])
      ijk <- ijk[use, , drop=FALSE]
      ## 
      npattern <- nrow(ijk)
      #' repeat this pattern in each 'across' slice
      ijk <- apply(ijk, 2, rep, times=nslice)
      ijk[, across] <- rep(seq_len(nslice), each=npattern)
    }
    if(is.vector(values) || inherits(values, "sparseVector")) {
      # vector of values matching margin extent
      check.anySparseVector(values, dimx[margin],
                            things=c("rows","columns","planes")[margin],
                            oneok=TRUE)
      nv <- if(inherits(values, "sparseVector")) values@length else length(values)
      yindex <- ijk[,margin]
      yvalues <- if(nv > 1) values[yindex] else rep(values[1], length(yindex))
      y <- sparse3Darray(i=ijk[,1],
                         j=ijk[,2],
                         k=ijk[,3],
                         x=yvalues,
                         dims=dimx, dimnames=dimnames(x))
      return(y)
    } else if(is.matrix(values) || inherits(values, "sparseMatrix")) {
      #' matrix of values.
      force(across)
      stopifnot(across != margin) 
      #' rows of matrix must match 'margin'
      if(nrow(values) != dimx[margin])
        stop(paste("Number of rows of values", paren(nrow(values)),
                   "does not match array size in margin", paren(dimx[margin])),
             call.=FALSE)
      #' columns of matrix must match 'across'
      if(ncol(values) != dimx[across])
        stop(paste("Number of columns of values", paren(ncol(values)),
                   "does not match array size in 'across'",
                   paren(dimx[across])),
             call.=FALSE)
      # map
      yindex <- ijk[,margin]
      zindex <- ijk[,across]
      y <- sparse3Darray(i=ijk[,1], j=ijk[,2], k=ijk[,3],
                         x=values[cbind(yindex,zindex)],
                         dims=dimx, dimnames=dimnames(x))
      return(y)
    } else stop("Format of values not understood", call.=FALSE)
  }
  stop("Format of x not understood", call.=FALSE)
}


applySparseEntries <- local({

  applySparseEntries <- function(x, f, ...) {
    ## apply vectorised function 'f' only to the nonzero entries of 'x'
    if(inherits(x, "sparseMatrix")) {
      x <- applytoxslot(x, f, ...)
    } else if(inherits(x, "sparse3Darray")) {
      x <- applytoxentry(x, f, ...)
    } else {
      x <- f(x, ...)
    }
    return(x)
  }

  applytoxslot <- function(x, f, ...) {
    xx <- x@x
    n <- length(xx)
    xx <- f(xx, ...)
    if(length(xx) != n)
      stop(paste("Function f returned the wrong number of values:",
                 length(xx), "instead of", n),
           call.=FALSE)
    x@x <- xx
    return(x)
  }
  
  applytoxentry <- function(x, f, ...) {
    xx <- x$x
    n <- length(xx)
    xx <- f(xx, ...)
    if(length(xx) != n)
      stop(paste("Function f returned the wrong number of values:",
                 length(xx), "instead of", n),
           call.=FALSE)
    x$x <- xx
    return(x)
  }
  
  applySparseEntries
})

check.anySparseVector <- function(v, npoints=NULL, fatal=TRUE, things="data points",
                                  naok=FALSE, warn=FALSE, vname, oneok=FALSE) {
  # vector, factor or sparse vector of values for each point/thing
  if(missing(vname))
    vname <- sQuote(short.deparse(substitute(v)))
  whinge <- NULL
  isVector <- is.atomic(v) && is.null(dim(v))
  isSparse <- inherits(v, "sparseVector")
  nv <- if(isSparse) v@length else length(v)
  if(!isVector && !isSparse) 
    whinge <- paste(vname, "is not a vector, factor or sparse vector")
  else if(!(is.null(npoints) || (nv == npoints)) &&
          !(oneok && nv == 1)) 
    whinge <- paste("The length of", vname,
                    paren(paste0("=", nv)), 
                    "should equal the number of", things,
                    paren(paste0("=", npoints)))
  else if(!naok && anyNA(v))
    whinge <- paste("Some values of", vname, "are NA or NaN")
  #
  if(!is.null(whinge)) {
    if(fatal) stop(whinge)
    if(warn) warning(whinge)
    ans <- FALSE
    attr(ans, "whinge") <- whinge
    return(ans)
  }
  return(TRUE)
}

representativeRows <- function(x) {
  ## select a unique representative of each equivalence class of rows,
  ## in a numeric matrix or data frame of numeric values.
  nr <- nrow(x)
  if(nr == 1L) return(TRUE)
  if(nr == 2L) {
    agree <- all(x[1,] == x[2,])
    ans <- c(TRUE, !agree)
    return(ans)
  }
  ord <- do.call(order, as.list(as.data.frame(x)))
  y <- x[ord, , drop=FALSE]
  dy <- apply(y, 2, diff)
  answer <- logical(nrow(y))
  answer[ord] <- c(TRUE, !matrowall(dy == 0))
  return(answer)
}