File: sparse3Darrays.R

package info (click to toggle)
r-cran-spatstat.sparse 3.1-0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 312 kB
  • sloc: ansic: 442; sh: 13; makefile: 2
file content (355 lines) | stat: -rw-r--r-- 10,980 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#' Header for spatstat.sparse/tests/*R
#'

require(spatstat.sparse)
ALWAYS <- FULLTEST <- TRUE
#'    tests/sparse3Darrays.R
#'  Basic tests of code in sparse3Darray.R and sparsecommon.R
#'  $Revision: 1.32 $ $Date: 2023/06/23 02:34:57 $

if(!exists("ALWAYS")) ALWAYS <- TRUE
if(!exists("FULLTEST")) FULLTEST <- ALWAYS

if(ALWAYS) { # fundamental, C code
local({
  #' forming arrays

  #' creation by specifying nonzero elements
  M <- sparse3Darray(i=1:3, j=c(3,1,2), k=4:2,
                     x=runif(3), dims=rep(4, 3))
  #' duplicate entries
  Mn <- sparse3Darray(i=c(1,1,2), j=c(2,2,1), k=c(3,3,2),
                     x=runif(3), dims=rep(3, 3))
  #' cumulate entries in duplicate positions
  Ms <- sparse3Darray(i=c(1,1,2), j=c(2,2,1), k=c(3,3,2),
                      x=runif(3), dims=rep(3, 3), strict=TRUE)

  #' print method
  print(M)
  
  #' conversion of other data
  A <- array(c(1,3,0,0,0,0,0,4,0,2,0,5,
               0,0,1,0,0,0,1,0,0,0,1,0),
             dim=c(3,4,2))
  A1 <- A[,,1]
  A2 <- A[,,2]
  Z <- A[integer(0), , ]
  
  #' array to sparse array
  AA <- as.sparse3Darray(A) # positive extent
  ZZ <- as.sparse3Darray(Z) # zero extent
  #' list of matrices to sparse array
  AA <- as.sparse3Darray(list(A1, A2))
  #' matrix to sparse array
  AA1 <- as.sparse3Darray(A1)
  #' vector to sparse array
  A11 <- A[,1,1]
  AA11 <- as.sparse3Darray(A11)
  #' NULL with warning
  suppressWarnings(Niets <- as.sparse3Darray(list()))

  #' 
  dim(AA) <- dim(AA) + 1

  I1 <- SparseIndices(A1)
  I11 <- SparseIndices(A11)
  
  BB <- evalSparse3Dentrywise(AA + AA/2)

  MM <- bind.sparse3Darray(M, M, along=1)
  MM <- bind.sparse3Darray(M, M, along=2)

  if(require(Matrix)) {
    #' sparse matrices from Matrix package
    A1 <- as(A1, "sparseMatrix")
    A2 <- as(A2, "sparseMatrix")
    A11 <- as(A11, "sparseVector")
    #' convert a list of sparse matrices to sparse array
    AA <- as.sparse3Darray(list(A1, A2))
    #' sparse matrix to sparse array
    AA1 <- as.sparse3Darray(A1)
    #' sparse vector to sparse array
    AA11 <- as.sparse3Darray(A11)

    #' internals 
    E1  <- SparseEntries(A1)
    I1  <- SparseIndices(A1)
    I11 <- SparseIndices(A11)
    df <- data.frame(i=c(1,3,5), j=3:1, k=rep(2, 3), x=runif(3))
    aa <- EntriesToSparse(df, NULL)
    bb <- EntriesToSparse(df, 7)
    cc <- EntriesToSparse(df, c(7, 4))
    dd <- EntriesToSparse(df, c(7, 4, 3))

    #' duplicated entries
    dfdup <- df[c(1:3, 2), ]
    aa <- EntriesToSparse(dfdup, NULL)
    bb <- EntriesToSparse(dfdup, 7)
    cc <- EntriesToSparse(dfdup, c(7, 4))
    dd <- EntriesToSparse(dfdup, c(7, 4, 3))
    
    #' example from Joey Arthur (bug in EntriesToSparse)
    joey <- as.sparse3Darray(
      list(
        as(matrix(rep(1, 9), 3, 3), 'dgCMatrix'),
        as(matrix(rep(0, 9), 3, 3), 'dgCMatrix'),
        as(matrix(rep(2, 9), 3, 3), 'dgCMatrix')
      )
    )
    answer <- marginSumsSparse(joey, 3)
    rightanswer <- marginSums(as.array(joey), 3) # [1] 9 0 18
    if(!all(as.vector(answer) == rightanswer))  {
      cat("Result of marginSumsSparse:\n")
      print(answer)
      cat("Right answer:\n")
      print(rightanswer)
      stop("Incorrect answer from marginSumsSparse")
    }

  }
})

    
local({

  if(require(Matrix)) {

    M <- sparse3Darray(i=1:4, j=sample(1:4, replace=TRUE),
                       k=c(1,2,1,2), x=1:4, dims=c(5,5,2))

    M

    dimnames(M) <- list(letters[1:5], LETTERS[1:5], c("yes", "no"))
    M
    
    U <- aperm(M, c(1,3,2))
    U

    #' tests of [.sparse3Darray
    M[ 3:4, , ]
    M[ 3:4, 2:4, ]
    M[ 4:3, 4:2, 1:2]
    M[, 3, ]
    M[, 3, , drop=FALSE]
    M[c(FALSE,TRUE,FALSE,FALSE,TRUE), , ]
    M[, , c(FALSE,FALSE), drop=FALSE]
    M[1:2, 1, 2:3] # exceeds array bounds
    # matrix index
    M[cbind(3:5, 3:5, c(1,2,1))]
    M[cbind(3:5, 3:5, 2)]
    M[cbind(3:5,   2, 2)]
    M[cbind(c(2,2,4), c(3,3,2), 1)] # repeated indices
    M[cbind(1:4, 1, 2:3)] # exceeds array bounds

    MA <- as.array(M)
    UA <- as.array(U)

    Mfix <- sparse3Darray(i=1:3, j=c(3,1,2), k=4:2,
                          x=runif(3), dims=rep(4, 3))
    Mfix[cbind(1,3,4)] # single entry - occupied
    Mfix[cbind(1,2,4)] # single entry - unoccupied
    Mfix[cbind(1,c(2,3,2,3),4)] # sparse vector with repeated entries
    

    ## tests of "[<-.sparse3Darray"
    Mflip <- Mzero <- MandM <- Mnew <- Mext <- M
    Mflip[ , , 2:1] <- M
    stopifnot(Mflip[3,1,1] == M[3,1,2])
    Mzero[1:3,1:3,] <- 0
    stopifnot(all(Mzero[1,1,] == 0))
    M2a <- M[,,2,drop=FALSE]
    M2d <- M[,,2,drop=TRUE]
    MandM[,,1] <- M2a
    MandM[,,1] <- M2d
    ## slices of different dimensions
    M[ , 3, 1] <- 1:5
    M[2,  , 2] <- 1:5
    M[ 1, 3:5, 2] <- 4:6
    M[ 2, 5:3, 2] <- 4:6
    V3 <- sparseVector(x=1, i=2, length=3)
    M[ 1, 3:5, 2] <- V3
    M[ 2, 5:3, 2] <- V3
    M[,,2] <- M2a
    M[,,2] <- (M2a + 1)
    V5 <- sparseVector(x=1:2, i=2:3, length=5)
    M[,2,2] <- V5
    M[,,2] <- V5
    Mext[1,2,3] <- 4 # exceeds array bounds
    ## integer matrix index
    Mnew[cbind(3:5, 3:5, c(1,2,1))] <- 1:3
    Mnew[cbind(3:5, 3:5, 2)] <- 1:3
    Mnew[cbind(3:5,   2, 2)] <- 1:3
    Mnew[cbind(3:5, 3:5, c(1,2,1))] <- V3
    Mnew[cbind(3:5, 3:5, 2)] <- V3
    Mnew[cbind(3:5,   2, 2)] <- V3
    ## tests of arithmetic (Math, Ops, Summary)
    negM <- -M
    oneM <- 1 * M
    oneM <- M * 1
    twoM <- M + M
    range(M)

    cosM <- cos(M)  # non-sparse
    sinM <- sin(M)  # sparse

    Mpos <- (M > 0) # sparse
    Mzero <- !Mpos # non-sparse

    stopifnot(all((M+M) == 2*M))     # non-sparse
    stopifnot(!any((M+M) != 2*M))    # sparse

    ztimesM <- (1:5) * M  # sparse
    zplusM <- (1:5) + M  # non-sparse

    ## reconcile dimensions
    Msub <- M[,,1,drop=FALSE]
    Mdif <- M - Msub
    Mduf <- Msub - M
    
    ## tensor operator
    o <- tensorSparse(c(1,-1), M, 1, 3)
    o <- tensorSparse(M, M, 1:2, 1:2)
    o <- tensorSparse(M, M, 1:2, 2:1)
    o <- tensorSparse(as.array(M), as.array(M), 1:2, 2:1)
    V <- sparseVector(i=c(1,3,6),x=1:3, length=7)
    o <- tensorSparse(V,V)
    o <- tensorSparse(V,V,1,1)
    o <- tensorSparse(M,V[1:5],1,1)
    A <- sparseMatrix(i=integer(0), j=integer(0), x=numeric(0), dims=c(7, 15))
    A[1:4, 2:5] <- 3
    o <- tensorSparse(A, A, 1, 1)
    o <- tensorSparse(t(A), A, 2, 1)
    o <- tensorSparse(V, A, 1, 1)
    o <- tensorSparse(t(A), V, 2, 1)
    o <- tensorSparse(as.vector(V), A, 1, 1)
    o <- tensorSparse(t(A), as.vector(V), 2, 1)

    v <- 0:3
    o <- tensor1x1(v, Mfix)
    o <- tensor1x1(v, as.array(Mfix))
    o <- tensor1x1(as(v, "sparseVector"), Mfix)
    
    ## test of anyNA method
    anyNA(M)

    ## previously caused an error 
    a <- list(i = c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
                    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
                    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
                    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
                    2L, 2L, 2L, 2L),
              j = c(17L, 4L, 34L, 39L, 38L, 25L, 14L, 
                    40L, 1L, 19L, 36L, 9L, 16L, 23L,
                    15L, 17L, 4L, 34L, 39L, 38L, 
                    25L, 14L, 40L, 1L, 19L, 36L, 9L,
                    16L, 23L, 15L, 13L, 31L, 8L, 
                    5L, 42L),
              k = c(14L, 8L, 38L, 30L, 17L, 5L, 9L,
                    6L, 31L, 39L, 26L, 27L, 41L, 1L,
                    28L, 14L, 8L, 38L, 30L, 17L, 5L, 9L, 6L, 31L, 
                    39L, 26L, 27L, 41L, 1L, 28L, 36L, 15L, 19L, 21L, 42L))
    A <- with(a, sparse3Darray(i=i, j=j, k=k, x=1, dims=c(2, 42, 42)))
    stopifnot(all(sumsymouterSparse(A) == sumsymouter(as.array(A))))
    
    # no entries indexed
    A[integer(0), integer(0), integer(0)] <- 99
    A[matrix(, 0, 3)] <- 99

    if(FULLTEST) { # re-check with randomised data 
      ## .......... a possible application in spatstat
      ## n <- npoints(cells)
      ## cl10 <- as.data.frame(closepairs(cells, 0.1))
      ## cl12 <- as.data.frame(closepairs(cells, 0.12))
      ## ...........
      n <- 42
      ii <- sample(1:n, 20)
      jj <- sample(1:n, 20)
      cl12 <- data.frame(i=ii, j=jj)
      cl10 <- data.frame(i=ii[1:15], j=jj[1:15])
      ## ...........
      cl10$k <- 1
      cl12$k <- 2
      cl <- rbind(cl10, cl12)
      Z <- with(cl, sparse3Darray(i=i, j=j, k=k, x=1, dims=c(n,n,2)))
      dimnames(Z) <- list(NULL, NULL, c("r=0.1", "r=0.12"))
      Z <- aperm(Z, c(3,1,2))
      stopifnot(all(sumsymouterSparse(Z) == sumsymouter(as.array(Z))))
    }
    
    ## complex valued arrays
    Mcplx <- sparse3Darray(i=1:3, j=c(3,1,2), k=4:2,
                           x=runif(3)+runif(3)*1i, dims=rep(4, 3))
    print(Mcplx)
    

    #' -----------  sparsecommon.R -----------------------
    B <- sparseMatrix(i=1:3, j=3:1, x= 10 * (1:3), dims=c(4,4))
    #' (and using sparse 3D array M and sparse vector V from above)
    V2 <- sparseVector(i=c(2,3,6),x=4:6, length=7)  # different pattern
    check.anySparseVector(V2, 10, fatal=FALSE)

    Bmap <- mapSparseEntries(B, 1, 4:1)
    Mmap1 <- mapSparseEntries(M, 1, 5:1, across=3)
    Mmap2 <- mapSparseEntries(M, 3, 2:1, conform=FALSE)
    Mmap3 <- mapSparseEntries(M, 1, matrix(1:10, 5, 2), across=3)
    
    Vmap <- mapSparseEntries(V, 1, V2)
    Vmap <- mapSparseEntries(V, 1, 8)
    Vthrice  <- expandSparse(V, 3)
    VthriceT <- expandSparse(V, 3, 1)
    VF <- as.vector(V) # non-sparse
    VFmap <- mapSparseEntries(VF, 1, V2)
    VFmap <- mapSparseEntries(VF, 1, 8)
    VFthrice  <- expandSparse(VF, 3)
    VFthriceT <- expandSparse(VF, 3, 1)
    VFthriceX <- expandSparse(VF, 3, 2)
    
    VV <- sparseVectorCumul(rep(1:3,2), rep(c(3,1,2), 2), 5)

    Vsum <- applySparseEntries(V, sum)
    Bdouble <- applySparseEntries(B, function(x) { 2 * x })
    Mminus <- applySparseEntries(M, function(x) -x)

    VX <- expandSparse(B, 3, 1)
    VX <- expandSparse(B, 3, 2)
    VX <- expandSparse(B, 3, 3)
    
    # empty sparse matrices/arrays
    Bempty <- B
    Bempty[] <- 0
    mapSparseEntries(Bempty, 1, 42)
    Mempty <- M
    Mempty[] <- 0
    Mmap1 <- mapSparseEntries(Mempty, 1, 5:1, across=3)
    Mmap2 <- mapSparseEntries(Mempty, 3, 2:1, conform=FALSE)
    Mmap3 <- mapSparseEntries(Mempty, 1, matrix(1:10, 5, 2), across=3)

    #'  -------------- sparselinalg.R -------------------------
    U <- aperm(M,c(3,1,2))  # 2 x 5 x 5
    UU <- sumsymouterSparse(U, dbg=TRUE)
    w <- matrix(0, 5, 5)
    w[cbind(1:3,2:4)] <- 0.5
    w <- as(w, "sparseMatrix")
    UU <- sumsymouterSparse(U, w, dbg=TRUE)
    Uempty <- sparse3Darray(dims=c(2,5,5))
    UU <- sumsymouterSparse(Uempty, w, dbg=TRUE)
    #' complex
    Ucom <- U + U * 1i
    UU <- sumsymouterSparse(Ucom)
    UU <- sumsymouterSparse(Ucom, w)
    #' 
  }

  ## 1 x 1 x 1 arrays
  M1 <- sparse3Darray(i=1, j=1, k=1, x=42, dims=rep(1,3))
  M0 <- sparse3Darray(                     dims=rep(1,3))
  i1 <- matrix(1, 1, 3)
  a1 <- M1[i1]
  a0 <- M0[i1]
  A <- array(runif(75) * (runif(75) < 0.7), dim=c(3,5,5))
  M <- as.sparse3Darray(A)
  M[rep(1,3), c(1,1,2), rep(2, 3)]
})

}