File: xysegment.R

package info (click to toggle)
r-cran-spatstat.utils 1.13-0-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 444 kB
  • sloc: ansic: 1,390; sh: 4; makefile: 2
file content (232 lines) | stat: -rwxr-xr-x 7,383 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#
#      xysegment.S
#
#     $Revision: 1.18 $    $Date: 2017/02/20 06:27:10 $
#
# Low level utilities for analytic geometry for line segments
#
# author: Adrian Baddeley 2001
#         from an original by Rob Foxall 1997
#
# distpl(p, l) 
#       distance from a single point p  = (xp, yp)
#       to a single line segment l = (x1, y1, x2, y2)
#
# distppl(p, l) 
#       distances from each of a list of points p[i,]
#       to a single line segment l = (x1, y1, x2, y2)
#       [uses only vector parallel ops]
#
# distppll(p, l) 
#       distances from each of a list of points p[i,]
#       to each of a list of line segments l[i,] 
#       [interpreted code uses large matrices and 'outer()']
#       [Fortran implementation included!]

distpl <- function(p, l) {
  xp <- p[1]
  yp <- p[2]
  dx <- l[3]-l[1]
  dy <- l[4]-l[2]
  leng <- sqrt(dx^2 + dy^2)
  # vector from 1st endpoint to p
  xpl <- xp - l[1]
  ypl <- yp - l[2]
  # distance from p to 1st & 2nd endpoints
  d1 <- sqrt(xpl^2 + ypl^2)
  d2 <- sqrt((xp-l[3])^2 + (yp-l[4])^2)
  dmin <- min(d1,d2)
  # test for zero length
  if(leng < .Machine$double.eps)
    return(dmin)
  # rotation sine & cosine
  co <- dx/leng
  si <- dy/leng
  # back-rotated coords of p
  xpr <- co * xpl + si * ypl
  ypr <-  - si * xpl + co * ypl
  # test
  if(xpr >= 0 && xpr <= leng)
    dmin <- min(dmin, abs(ypr))
  return(dmin)
}

distppl <- function(p, l) {
  xp <- p[,1]
  yp <- p[,2]
  dx <- l[3]-l[1]
  dy <- l[4]-l[2]
  leng <- sqrt(dx^2 + dy^2)
  # vector from 1st endpoint to p
  xpl <- xp - l[1]
  ypl <- yp - l[2]
  # distance from p to 1st & 2nd endpoints
  d1 <- sqrt(xpl^2 + ypl^2)
  d2 <- sqrt((xp-l[3])^2 + (yp-l[4])^2)
  dmin <- pmin.int(d1,d2)
  # test for zero length
  if(leng < .Machine$double.eps)
    return(dmin)
  # rotation sine & cosine
  co <- dx/leng
  si <- dy/leng
  # back-rotated coords of p
  xpr <- co * xpl + si * ypl
  ypr <-  - si * xpl + co * ypl
  # ypr is perpendicular distance to infinite line
  # Applies only when xp, yp in the middle
  middle <- (xpr >= 0 & xpr <= leng)
  if(any(middle))
    dmin[middle] <- pmin.int(dmin[middle], abs(ypr[middle]))
  
  return(dmin)
}

distppll <- function(p, l, mintype=0,
                     method=c("C", "Fortran", "interpreted"), listit=FALSE) {
  np <- nrow(p)
  nl <- nrow(l)
  xp <- p[,1]
  yp <- p[,2]
  if(is.na(match(mintype,0:2)))
    stop(paste("Argument", sQuote("mintype"), "must be 0, 1 or 2.\n"))
  method <- match.arg(method)
  if(method == "Fortran") {
    warning("method='Fortran' is no longer supported; method='C' was used")
    method <- "C"
  }
  switch(method,
         interpreted={
           dx <- l[,3]-l[,1]
           dy <- l[,4]-l[,2]
           # segment lengths
           leng <- sqrt(dx^2 + dy^2)
           # rotation sines & cosines
           co <- dx/leng
           si <- dy/leng
           co <- matrix(co, nrow=np, ncol=nl, byrow=TRUE)
           si <- matrix(si, nrow=np, ncol=nl, byrow=TRUE)
           # matrix of squared distances from p[i] to 1st endpoint of segment j
           xp.x1 <- outer(xp, l[,1], "-")
           yp.y1 <- outer(yp, l[,2], "-")
           d1 <- xp.x1^2 + yp.y1^2
           # ditto for 2nd endpoint
           xp.x2 <- outer(xp, l[,3], "-")
           yp.y2 <- outer(yp, l[,4], "-")
           d2 <- xp.x2^2 + yp.y2^2
           # for each (i,j) rotate p[i] around 1st endpoint of segment j
           # so that line segment coincides with x axis
           xpr <- xp.x1 * co + yp.y1 * si
           ypr <-  - xp.x1 * si + yp.y1 * co
           d3 <- ypr^2
           # test
           lenf <- matrix(leng, nrow=np, ncol=nl, byrow=TRUE)
           zero <- (lenf < .Machine$double.eps) 
           outside <- (zero | xpr < 0 | xpr > lenf) 
           if(any(outside))
             d3[outside] <- Inf

           dsq <- matrix(pmin.int(d1, d2, d3),nrow=np, ncol=nl)
           d <- sqrt(dsq)
           if(mintype >= 1)
             min.d <- apply(d, 1, min)
           if(mintype == 2)
             min.which <- apply(d, 1, which.min)
         },
# Fortran code removed!         
#         Fortran={
#           eps <- .Machine$double.eps
#           if(mintype > 0) {
#             big <- sqrt(2)*diff(range(c(p,l)))
#             xmin <- rep.int(big,np)
#           } else {
#             xmin <- 1
#           } 
#           n2 <- if(mintype > 1) np else 1
#           temp <- DOTFortran("dppll",
#                            x=as.double(xp),
#                            y=as.double(yp),
#                            l1=as.double(l[,1]),
#                            l2=as.double(l[,2]),
#                            l3=as.double(l[,3]),
#                            l4=as.double(l[,4]),
#                            np=as.integer(np),
#                            nl=as.integer(nl),
#                            eps=as.double(eps),
#                            mint=as.integer(mintype),
#                            rslt=double(np*nl),
#                            xmin=as.double(xmin),
#                            jmin=integer(n2))
#           d <- matrix(temp$rslt, nrow=np, ncol=nl)
#           if(mintype >= 1)
#             min.d <- temp$xmin
#           if(mintype == 2)
#             min.which <- temp$jmin
#         },
         C = {
           eps <- .Machine$double.eps
           temp <- .C(C_prdist2segs,
                      x=as.double(xp),
                      y=as.double(yp),
                      npoints =as.integer(np),
                      x0=as.double(l[,1]),
                      y0=as.double(l[,2]),
                      x1=as.double(l[,3]),
                      y1=as.double(l[,4]),
                      nsegments=as.integer(nl),
                      epsilon=as.double(eps),
                      dist2=as.double(numeric(np * nl)),
                      PACKAGE = "spatstat.utils")
           d <- matrix(sqrt(temp$dist2), nrow=np, ncol=nl)
           if(mintype == 2) {
             min.which <- apply(d, 1, which.min)
             min.d <- d[cbind(1:np, min.which)]
           } else if (mintype == 1) {
             min.d <- apply(d, 1, min)
           }
         })
  ###### end switch #####
  if(mintype==0)
    return(if(listit) list(d=d) else d)
  else if(mintype==1)
    return(list(d=d, min.d=min.d))
  else if(mintype==2) 
    return(list(d=d, min.d=min.d, min.which=min.which))
}

# (distance to) nearest segment 

distppllmin <- function(p, l, big=NULL) {
  np <- nrow(p)
  nl <- nrow(l)
  if(is.null(big)) {
    xdif <- diff(range(c(p[,1],l[, c(1,3)])))
    ydif <- diff(range(c(p[,2],l[, c(2,4)])))
    big <- 2 * (xdif^2 + ydif^2)
  }
  z <- NNdist2segments(p[,1], p[,2],
                       l[,1], l[,2], l[,3], l[,4],
                       big)
  return(list(min.d=sqrt(z$dist2), min.which=z$index))
}

NNdist2segments <- function(xp, yp, x0, y0, x1, y1, bigvalue) {
  np <- length(xp)
  ns <- length(x0)
  dist2 <- rep(bigvalue, np)
  z <- .C(C_nndist2segs,
          xp=as.double(xp),
          yp=as.double(yp),
          npoints=as.integer(np),
          x0=as.double(x0),
          y0=as.double(y0),
          x1=as.double(x1),
          y1=as.double(y1),
          nsegments=as.integer(ns),
          epsilon=as.double(.Machine$double.eps),
          dist2=as.double(dist2),
          index=as.integer(integer(np)),
          PACKAGE = "spatstat.utils")
  return(list(dist2=z$dist2,
              index=z$index + 1L))
}