File: xshewhartrunsrules.arl.Rd

package info (click to toggle)
r-cran-spc 1%3A0.6.7-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,880 kB
  • sloc: ansic: 22,125; makefile: 2
file content (113 lines) | stat: -rw-r--r-- 5,628 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
\name{xshewhartrunsrules.arl}
\alias{xshewhartrunsrules.arl}
\alias{xshewhartrunsrules.crit}
\alias{xshewhartrunsrules.ad}
\alias{xshewhartrunsrules.matrix}
\title{Compute ARLs of Shewhart control charts with and without runs rules}
\description{Computation of the (zero-state and steady-state) Average Run Length (ARL)
for Shewhart control charts with and without runs rules
monitoring normal mean.}
\usage{xshewhartrunsrules.arl(mu, c = 1, type = "12")

xshewhartrunsrules.crit(L0, mu = 0, type = "12")

xshewhartrunsrules.ad(mu1, mu0 = 0, c = 1, type = "12")

xshewhartrunsrules.matrix(mu, c = 1, type = "12")}
\arguments{
\item{mu}{true mean.}
\item{L0}{pre-defined in-control ARL, that is, determine \code{c} so that the mean
number of observations until a false alarm is \code{L0}.}
\item{mu1, mu0}{for the steady-state ARL two means are specified, mu0 is the in-control one
and usually equal to 0 , and mu1 must be given.}
\item{c}{normalizing constant to ensure specific alarming behavior.}
\item{type}{controls the type of Shewhart chart used, seed details section.}
}
\details{
\code{xshewhartrunsrules.arl} determines the zero-state Average Run Length (ARL)
based on the Markov chain approach given in Champ and Woodall (1987).
\code{xshewhartrunsrules.matrix} provides the corresponding
transition matrix that is also used in \code{xDshewhartrunsrules.arl} (ARL for control charting drift).
\code{xshewhartrunsrules.crit} allows to find the normalization constant \code{c} to
attain a fixed in-control ARL. Typically this is needed to calibrate the chart.
With \code{xshewhartrunsrules.ad} the steady-state ARL is calculated.
With the argument \code{type} certain runs rules could be set. The following list gives an overview.

\itemize{
\item{"1"}{ The classical Shewhart chart with \code{+/- 3 c sigma} control limits (\code{c} is typically
equal to 1 and can be changed by the argument \code{c}).}
\item{"12"}{ The classic and the following runs rule: 2 of 3 are beyond \code{+/- 2 c sigma} on the same
side of the chart.}
\item{"13"}{ The classic and the following runs rule: 4 of 5 are beyond \code{+/- 1 c sigma} on the same
side of the chart.}
\item{"14"}{ The classic and the following runs rule: 8 of 8 are on the same side of the chart
(referring to the center line).}}
}
\value{Returns a single value which resembles the zero-state or steady-state ARL.
\code{xshewhartrunsrules.matrix} returns a matrix.}
\references{
C. W. Champ and W. H. Woodall (1987),
Exact results for Shewhart control charts with supplementary runs rules,
\emph{Technometrics 29}, 393-399.
}
\author{Sven Knoth}
\seealso{
\code{xDshewhartrunsrules.arl} for zero-state ARL of Shewhart control charts
with or without runs rules under drift.
}
\examples{
## Champ/Woodall (1987)
## Table 1
mus <- (0:15)/5
Mxshewhartrunsrules.arl <- Vectorize(xshewhartrunsrules.arl, "mu")
# standard (1 of 1 beyond 3 sigma) Shewhart chart without runs rules
C1 <- round(Mxshewhartrunsrules.arl(mus, type="1"), digits=2)
# standard + runs rule: 2 of 3 beyond 2 sigma on the same side
C12 <- round(Mxshewhartrunsrules.arl(mus, type="12"), digits=2)
# standard + runs rule: 4 of 5 beyond 1 sigma on the same side
C13 <- round(Mxshewhartrunsrules.arl(mus, type="13"), digits=2)
# standard + runs rule: 8 of 8 on the same side of the center line
C14 <- round(Mxshewhartrunsrules.arl(mus, type="14"), digits=2)

## original results are
#  mus     C1    C12    C13    C14                                    
#  0.0 370.40 225.44 166.05 152.73                                    
#  0.2 308.43 177.56 120.70 110.52                                    
#  0.4 200.08 104.46  63.88  59.76                                    
#  0.6 119.67  57.92  33.99  33.64                                    
#  0.8  71.55  33.12  19.78  21.07                                    
#  1.0  43.89  20.01  12.66  14.58                                    
#  1.2  27.82  12.81   8.84  10.90                                    
#  1.4  18.25   8.69   6.62   8.60                                    
#  1.6  12.38   6.21   5.24   7.03                                    
#  1.8   8.69   4.66   4.33   5.85                                    
#  2.0   6.30   3.65   3.68   4.89                                    
#  2.2   4.72   2.96   3.18   4.08                                    
#  2.4   3.65   2.48   2.78   3.38                                    
#  2.6   2.90   2.13   2.43   2.81                                    
#  2.8   2.38   1.87   2.14   2.35                                    
#  3.0   2.00   1.68   1.89   1.99

data.frame(mus, C1, C12, C13, C14)

## plus calibration, i. e. L0=250 (the maximal value for "14" is 255!
L0 <- 250
c1  <- xshewhartrunsrules.crit(L0, type = "1")
c12 <- xshewhartrunsrules.crit(L0, type = "12")
c13 <- xshewhartrunsrules.crit(L0, type = "13")
c14 <- xshewhartrunsrules.crit(L0, type = "14")
C1  <- round(Mxshewhartrunsrules.arl(mus, c=c1,  type="1"), digits=2)
C12 <- round(Mxshewhartrunsrules.arl(mus, c=c12, type="12"), digits=2)
C13 <- round(Mxshewhartrunsrules.arl(mus, c=c13, type="13"), digits=2)
C14 <- round(Mxshewhartrunsrules.arl(mus, c=c14, type="14"), digits=2)
data.frame(mus, C1, C12, C13, C14)

## and the steady-state ARL
Mxshewhartrunsrules.ad <- Vectorize(xshewhartrunsrules.ad, "mu1")
C1  <- round(Mxshewhartrunsrules.ad(mus, c=c1,  type="1"), digits=2)
C12 <- round(Mxshewhartrunsrules.ad(mus, c=c12, type="12"), digits=2)
C13 <- round(Mxshewhartrunsrules.ad(mus, c=c13, type="13"), digits=2)
C14 <- round(Mxshewhartrunsrules.ad(mus, c=c14, type="14"), digits=2)
data.frame(mus, C1, C12, C13, C14)
}
\keyword{ts}