File: xshewhartrunsrules.matrix.R

package info (click to toggle)
r-cran-spc 1%3A0.7.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,888 kB
  • sloc: ansic: 22,279; makefile: 2
file content (163 lines) | stat: -rw-r--r-- 5,168 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

xshewhartrunsrules.matrix <- function(mu, c=1, type="12") {
	# Shewhart chart
	if (type=="1") {
  		p0  <- pnorm(  3*c, mean=mu ) - pnorm( -3*c, mean=mu)
  		Q <- p0
	}
	
	# 2 of 3 beyond +-2 sigma
	if (type=="12") {
		dimQ <- 7
		pl <- pnorm( -2*c, mean=mu ) - pnorm( -3*c, mean=mu)
		p0 <- pnorm(  2*c, mean=mu ) - pnorm( -2*c, mean=mu)
		pr <- pnorm(  3*c, mean=mu ) - pnorm(  2*c, mean=mu)
		
#                      1    2    3    4    5    6    7
#		       0000 1000 0100 0010 0001 1001 0110
#		1 0000 p0   pl   0    pr   0    0    0
#		2 1000 0    0    p0   0    0    0    pr
#               3 0100 p0   0    0    pr   0    0    0
#               4 0010 0    0    0    0    p0   pl   0
#               5 0001 p0   pl   0    0    0    0    0
#               6 1001 0    0    p0   0    0    0    0
#               7 0110 0    0    0    0    p0   0    0

		Q <- diag(0,dimQ)
		
		Q[1,2] <- pl;  Q[1,1] <- p0;  Q[1,4] <- pr
		               Q[2,3] <- p0;  Q[2,7] <- pr
			       Q[3,1] <- p0;  Q[3,4] <- pr
	        Q[4,6] <- pl;  Q[4,5] <- p0
		Q[5,2] <- pl;  Q[5,1] <- p0
		               Q[6,3] <- p0
		               Q[7,5] <- p0
	}	
	
	# 4 of 5 beyond +-1 sigma
	if (type=="13") {
		dimQ <- 29
		pl <- pnorm(  -c, mean=mu ) - pnorm( -3*c, mean=mu)
		p0 <- pnorm(   c, mean=mu ) - pnorm(   -c, mean=mu)
		pr <- pnorm( 3*c, mean=mu ) - pnorm(    c, mean=mu)
		
		Q <- diag(0,dimQ)
		
		Q[ 1, 2] <- pl;  Q[ 1, 1] <- p0;  Q[ 1,11] <- pr
		Q[ 2, 4] <- pl;  Q[ 2, 3] <- p0;  Q[ 2,12] <- pr
		Q[ 3, 5] <- pl;  Q[ 3, 1] <- p0;  Q[ 3,11] <- pr
		Q[ 4, 7] <- pl;  Q[ 4, 6] <- p0;  Q[ 4,13] <- pr
		Q[ 5, 8] <- pl;  Q[ 5, 3] <- p0;  Q[ 5,12] <- pr
		Q[ 6, 9] <- pl;  Q[ 6, 1] <- p0;  Q[ 6,11] <- pr
		                 Q[ 7,10] <- p0;  Q[ 7,14] <- pr
		                 Q[ 8, 6] <- p0;  Q[ 8,13] <- pr
		                 Q[ 9, 3] <- p0;  Q[ 9,12] <- pr
		                 Q[10, 1] <- p0;  Q[10,11] <- pr
		Q[11,16] <- pl;  Q[11,15] <- p0;  Q[11,19] <- pr
		Q[12,17] <- pl;  Q[12,15] <- p0;  Q[12,19] <- pr
		Q[13,18] <- pl;  Q[13,15] <- p0;  Q[13,19] <- pr
		                 Q[14,15] <- p0;  Q[14,19] <- pr
		Q[15, 2] <- pl;  Q[15, 1] <- p0;  Q[15,20] <- pr
		Q[16, 4] <- pl;  Q[16, 3] <- p0;  Q[16,21] <- pr
		Q[17, 8] <- pl;  Q[17, 3] <- p0;  Q[17,21] <- pr
		                 Q[18, 3] <- p0;  Q[18,21] <- pr
		Q[19,23] <- pl;  Q[19,22] <- p0;  Q[19,24] <- pr
		Q[20,16] <- pl;  Q[20,15] <- p0;  Q[20,25] <- pr
		Q[21,17] <- pl;  Q[21,15] <- p0;  Q[21,25] <- pr
		Q[22, 2] <- pl;  Q[22, 1] <- p0;  Q[22,26] <- pr
		Q[23, 4] <- pl;  Q[23, 3] <- p0;  Q[23,27] <- pr
		Q[24,29] <- pl;  Q[24,28] <- p0
		Q[25,23] <- pl;  Q[25,22] <- p0
		Q[26,16] <- pl;  Q[26,15] <- p0
		Q[27,17] <- pl;  Q[27,15] <- p0
		Q[28, 2] <- pl;  Q[28, 1] <- p0
		Q[29, 4] <- pl;  Q[29, 3] <- p0
	}
	
	# 8 on the same side
	if (type=="14") {
		dimQ <- 15
		pl <- pnorm(   0, mean=mu ) - pnorm( -3*c, mean=mu)
		pr <- pnorm( 3*c, mean=mu ) - pnorm(    0, mean=mu)
		
		Q <- diag(0,dimQ)
		
		Q[ 1, 2] <- pl;  Q[ 1, 9] <- pr
		Q[ 2, 3] <- pl;  Q[ 2, 9] <- pr
		Q[ 3, 4] <- pl;  Q[ 3, 9] <- pr
		Q[ 4, 5] <- pl;  Q[ 4, 9] <- pr
		Q[ 5, 6] <- pl;  Q[ 5, 9] <- pr
		Q[ 6, 7] <- pl;  Q[ 6, 9] <- pr
		Q[ 7, 8] <- pl;  Q[ 7, 9] <- pr
		                 Q[ 8, 9] <- pr
		Q[ 9, 2] <- pl;  Q[ 9,10] <- pr
		Q[10, 2] <- pl;  Q[10,11] <- pr
		Q[11, 2] <- pl;  Q[11,12] <- pr
		Q[12, 2] <- pl;  Q[12,13] <- pr
		Q[13, 2] <- pl;  Q[13,14] <- pr
		Q[14, 2] <- pl;  Q[14,15] <- pr
		Q[15, 2] <- pl;
	}

	# ... on the same side (general approach)
	if ( regexpr("SameSide", type)>0 ) {
		anzahl <- as.numeric(gsub("SameSide", "", type))
		dimQ <- 2*anzahl - 1
		hdQ <- anzahl - 1
		pl <- pnorm(   0, mean=mu ) - pnorm( -3*c, mean=mu)
		pr <- pnorm( 3*c, mean=mu ) - pnorm(    0, mean=mu)		
		Q <- diag(0, dimQ)
                for ( i in 1:hdQ ) {
                  Q[i,i+1]     <- pl
                  Q[hdQ+i+1,2] <- pl
                  Q[i,hdQ+2] <- pr
                  Q[hdQ+i,hdQ+i+1] <- pr
                }
	}
	
	# 2 of 2 beyond +-2 sigma
	if (type=="15") {
		dimQ <- 3
		pl <- pnorm( -2*c, mean=mu ) - pnorm( -3*c, mean=mu)
		p0 <- pnorm(  2*c, mean=mu ) - pnorm( -2*c, mean=mu)
		pr <- pnorm(  3*c, mean=mu ) - pnorm(  2*c, mean=mu)
		
#                     1   2   3
#		      00  10  01
#		1 00  p0  pr  pl
#		2 10  p0   0  pl
#               3 01  p0  pr   0

		Q <- diag(0,dimQ)
		
		Q[1,2] <- pl;  Q[1,1] <- p0;  Q[1,3] <- pr
		               Q[2,1] <- p0;  Q[2,3] <- pr
	        Q[3,2] <- pl;  Q[3,1] <- p0;
	}
	
	# 3 of 3 beyond +-3 sigma
	if (type=="19") {
		dimQ <- 5
		pl <- pnorm( -3*c, mean=mu )
		p0 <- pnorm(  3*c, mean=mu ) - pnorm( -3*c, mean=mu)
		pr <- 1 - pnorm(  3*c, mean=mu)
		
#                      1    2    3    4    5
#		       0000 1000 1100 0010 0011
#		1 0000 p0   pr   0    pl   0
#		2 1000 p0   0    pr   pl   0
#               3 1100 p0   0    0    pl   0
#		4 0010 p0   pr   0    0    pl
#		5 0011 p0   pr   0    0    0

		Q <- diag(0,dimQ)
		
		Q[1,4] <- pl;  Q[1,1] <- p0;  Q[1,2] <- pr
		Q[2,4] <- pl;  Q[2,1] <- p0;  Q[2,3] <- pr
	        Q[3,4] <- pl;  Q[3,1] <- p0;
		Q[4,5] <- pl;  Q[4,1] <- p0;  Q[4,2] <- pr
		               Q[5,1] <- p0;  Q[5,2] <- pr
	}
	
	Q
}